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ABSTRACT 
In a commuting scenario, drivers expect to arrive at their 
destinations on time. Drivers have an expectation as to how long 
it will take to reach the destination. To this end, drivers make 
independent decisions regarding the routes they take. Independent 
decision-making is uncoordinated and unlikely to lead to a 
balanced usage of the road network. However, a well-balanced 
traffic situation is in the best interest of all drivers, as it minimises 
their travel times on average over time. This study investigates the 
possibility of using an Evolutionary Game, Minority Game (MG), 
to achieve a balanced usage of a road network through 
independent decisions made by drivers assisted by the MG 
algorithm. The experimental results show that this simple game-
theoretic approach can achieve a near-optimal distribution of 
traffic in a network. An optimal distribution can be assumed to 
lead to equitable travel times which are close to the possible 
minimum considering the number of cars in the network. 

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 
– Multi-agent Systems. 

General Terms 
Algorithms 

Keywords 
Evolutionary game, Game theory, Multi-agent system, Traffic 
Assignment, Road Traffic Optimisation. 

1. INTRODUCTION 
The primary concern of a driver in a road network is to reach the 
destination. A driver’s choice of a route from the origin to the 
destination is independent of other drivers’ choices. The choices 
of the drivers cause the traffic flow on the roads.  

Traffic Assignment (TA) concerns itself with the route choices of 
the drivers between their origin-destination (OD) pairs. TA results 
in a distribution of the cars on the roads. A distribution of cars in 
proportion to the capacities of the roads can be regarded as an 
equilibrium which is fair on all participating drivers. 

During normal office hour commuting, drivers expect to reach the 
destination on time. Based on experience, the drivers usually have 
realistic expectations how long the trip will take at the time of the 
day the commute regularly takes place. If a driver reaches the 
destination within the expected time, we consider the travel time 
reasonable.  If drivers of the same OD pair experience similar travel 
times when travelling at roughly the same time, we consider the 
drivers’ travel times as fair.  

Researchers have attempted to help drivers minimise their travel 
times by providing real time traffic information to the drivers [3, 9, 
11, 16], as well as by allowing communication with other drivers 
[18]. Both approaches are based on unrealistic assumptions as using 
available technology, traffic information will always be incomplete 
and drivers cannot cooperate with all other parties involved.  

Also Braess’ Paradox showed that increasing capacity of roads or 
adding a new road to the road network may have adverse effect on 
individual travel time [5, 13, 15]. Routing games have also been 
introduced [14] but these are mainly based on the assumption that 
each driver possesses all essential information about the traffic 
situation which places it beyond the scope of this paper. 

Again, as the drivers are independent entities and their decisions 
affect each other, researchers have also attempted to solve the TA 
with game theoretic models [7]. However, the presence of a traffic 
controller added significantly to the complexity of the approach 
which was based on modelling the interaction between the traffic 
controller and the traffic on the roads. Our aim is to simplify the 
system by not involving the traffic controller. 

In this study, we propose a method based on simple evolutionary 
game theoretic model, named Minority Game [6], which will not 
require communication among the drivers and will not use real-time 
information, only past experience on the chosen routes by the 
drivers. By avoiding the requirement of real-time information, our 
proposed approach will be significantly simpler than the approaches 
which use real-time information provided by Advanced Traveller 
Information System (ATIS) devices. Moreover, our approach 
ensures reasonable and fair travel times to the drivers as well as 
distributes the cars on the road network near-optimally. 

2. TRAFFIC ASSIGNMENT 
2.1 Problem Description 
A road network can be represented as a set of nodes (origins, 
destinations, intersections) and links between the nodes. There are 
costs associated with the links such as travel time, monetary cost, and 
distance. A chain of links is referred to as a route. Each traveller who 
is travelling on a road network from an origin to a destination (known 
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as ‘OD pair’) typically has some alternative routes to choose from. 
Travellers who travel from an origin to a destination have their own 
preferences which guide their choices of a route. Travellers cause the 
traffic flow on the road network. 

The selection of a route for an OD pair is known as traffic assignment 
(TA). TA is the cause of the distribution of traffic on the road 
network. To find out an optimal distribution of traffic on the road 
network is the Traffic Assignment Problem (TAP). 

A common behavioural assumption is that drivers choose the route 
between an OD pair according to the principle of minimum travel 
time [8]. As there are other drivers on the routes, the travel time 
between an OD pair depends on the choices of these other drivers 
who also aim to minimise their travel time. When all drivers succeed 
in choosing the optimal route which minimises their travel times, this 
is referred to as Equilibrium or User Equilibrium or Wardrop’s 
Equilibrium [17]. According to Wardrop’s first principle, no 
travellers can reduce their travel time by choosing other routes 
between their OD pairs at equilibrium [17]. To reach the equilibrium, 
all travellers would have to know the perfect travel times throughout 
the road-network [8]. However, the assumption of perfect 
information is unrealistic. 

The drivers on the road are independent entities who make decisions 
usually without communication with other drivers. Each driver’s 
decision has an effect on the traffic flow and thus on others’ 
decisions. Hence, the Traffic Assignment Problem (TAP) can be 
viewed as a game-theoretic problem [7] where choices affect each 
other. The drivers are independent; they share limited information 
and try to minimise their travel time and thus, inadvertently, to form 
the equilibrium. Achieving the equilibrium is not a trivial task. 
Nonetheless, Challet and Zhang showed that their Minority Game 
(MG) model can achieve an equilibrium among agents by self-
organisation [6]. Their MG model is simple to implement and the 
system characteristic is very similar to the road traffic characteristic. 
This suggests that the MG might be well suited for solving the Traffic 
Assignment Problem.  

MG was introduced to simplify Arthur’s [2] El-Farol bar problem. 
However, the original MG formulation is not sufficient to solve the 
TAP. Therefore, in this work an extension of MG and a variation of 
El-Farol bar problem is integrated and proposed as an approach to 
solve the TAP. This hybrid approach ensures a reasonable travel time 
for the travellers and a near-optimal distribution of cars on the road 
network. 

2.2 Previous Approaches to TA 
All-or-nothing and multipath or stochastic proportional approaches 
are two traditional TA techniques where congestion was not 
considered [12]. Hence, these approaches are not entirely realistic. 
Chen and Ben-Akiva attempted to achieve the system-optimal 
distribution as well as the minimum total travel time for all drivers by 
applying their game theoretic formulation [7]. 

Bazzan and Klugl investigated the behaviour of agents under the effect 
of real-time information and thus how the agents change their route 
mid-way [3]. Precise information about the travel time on the routes 
may improve the network flow negligibly if the drivers repeatedly make 
route choices from the same origin to the same destination on the same 
road network around the same time of the day [11].  

Providing real-time information to the drivers has some drawbacks. If 
the drivers do not have perfect information, their travel time may 

increase compared to those having perfect information [1]. The 
quality of the information provided to the drivers affects the choice of 
the drivers [10]. Moreover, the drivers tend to ignore the information 
if they are informed regularly or they tend to concentrate on certain 
roads if they are informed about congestion on other roads [4]. 
Providing information to the drivers is not an easy task and ensuring 
the quality of the information so that it is of use to the drivers is 
complicated. 

Zhu et al proposed an agent based route choice model where nodes, 
links and travellers are modelled as agents [18]. The agents 
communicate with each other to share information and finally, the 
traveller agents choose their routes. A model where independent 
entities can take decisions without communication and coordination 
through self-organisation may be applicable to the traffic domain. 
Challet and Zhang’s Minority Game model [6] is one such approach 
where coordination among the agents occurs through self-
organisation with minimal information and without communication 
among the agents. 

3. MINORITY GAME 
Minority Game (MG) was introduced to simplify Arthur’s El 
Farol bar problem. Arthur formulated El Farol Bar Problem as an 
inductive reasoning and bounded rationality problem [2] and 
defined it as follows. N agents decide independently and without 
any communication, each week, whether to go to the bar which 
has a fixed capacity. If the number of attendants exceeds the 
capacity, patrons do not enjoy themselves.  

Each agent has predictors which map the history of past 
attendances to a prediction. The agents whose preferred predictors 
anticipate the attendance would not exceed the capacity go to the 
bar, all others stay at home. Thus, there are two possible actions 
for each agent: ‘go to the bar’ or ‘stay at home’. The agents rank 
their predictors by evaluating the predictions after each decision. 
If a predictor predicts correctly for an agent, that predictor scores 
a point regardless of whether it was used to make the decision. To 
make a decision, an agent uses the preferred predictor which is the 
predictor having the highest score. 

To predict the exact number of attendants using the past m days’ 
history, the length of each predictor would have to be Nm which is 
a rather large number even for a moderate N (see table 1 for an 
illustration). In order to simplify Arthus’ El Farol Bar problem, 
Challet and Zhang introduced Minority Game (MG) [6]. MG was 
defined as follows. An odd number, N , agents repeatedly take an 
action, either +1 for going to the bar or -1 for staying at home 
(figure 1). The agents on the minority side win. In the simplest 
version, all winners gain a point. 

+1

Agents 

+1 -1 -1 -1 +1 +1 -1 +1 +1

+1

+1 -1 -1

N +1
feedback

 
Figure 1. A set up of Minority Game for N agents with m = 3. 
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The previous winning decisions form the history. If the agents 
taking decision +1 were in the minority last time, the history will 
be +1. Thus the history can be denoted as a binary sequence. The 
agents are provided with the common history of last m winning 
sides. Each agent has a finite number of predictors which map the 
action +1 or -1 to the next time step based on the m-bit history. 
Table 1 shows an example of 3 predictors for m = 3. 

Table 1. Example of some Predictors for m = 3 

History  Predictor 1 Predictor 2 Predictor 3
-1 -1 -1  +1 +1 -1 
-1 -1 +1  +1 +1 -1 
-1 +1 -1  -1 +1 -1 
-1 +1 +1  +1 +1 -1 
+1 -1 -1  -1 -1 +1 
+1 -1 +1  +1 +1 +1 
+1 +1 -1  -1 -1 +1 
+1 +1 +1  -1 +1 -1 

 

The left side of the table contains all possible combinations of the 
history for m = 3 and the right side is the proposed action for that 
particular combination of the history. The predictors are 
initialised randomly and the agents cannot change their predictors 
in the traditional minority game. The length of the predictor is 2m 
which is significantly smaller than Nm.  

4. ADAPTATION OF MG IN TA 
Even though it is reasonable to assume that MG might achieve 
fair distributions of traffic and acceptable travel times for the 
drivers, adaptations have to be made to the original MG before it 
can used effectively for traffic assignment. 

4.1 Application of MG to the Traffic Domain 
MG is strictly a two alternative game and can directly be used to 
address the traffic assignment problem when we have a two-route 
scenario as in figure 2. 

 

 

Cars approaching point A have a choice between two links, which 
are assumed identical in terms of distance, while the travel time 
depends on the usage of the link. Drivers attempt to be part of the 
minority in choosing one of the links by using their predictors and 
rewarding them on success.  

Chmura and Pitz [9] applied the Minority Game model in traffic 
domain to observe the behaviour of the drivers who had strictly 
two alternatives as shown in figure 2. They investigated two 
different formulations, one of which assumes that drivers only 
know their own experience of the links, whereas in the other they 
share this information with all drivers. The authors concluded that 
the drivers’ choice of using the route with fewer cars is negatively 
correlated with their likelihood of route change [9]. Selten et al. 
performed experiments based on two experimental setups which 
resemble the set up of Chmura and Pitz [9] except for the 

capacities of the roads [16]. The authors’ experiment consisted of 
18 participants choosing between a main road and a side road. 
The travel times on the roads depended on the number of cars 
choosing the roads according to the authors’ formulation. Selten 
et al. observed that the mean numbers of drivers on the roads are 
close to pure equilibrium according to their equilibrium 
formulation [16].  

4.2 A NOVEL APPROACH TO TA USING 
MG 
In this study we propose a novel hybrid method using the concept 
of Challet and Zhang’s MG model [6] and Arthur’s El-Farol Bar 
model [2]. We assume that each driver has an OD pair and some 
previous experience of travelling to the destination at this time of 
day. There are usually several routes to reach the destination. 
Some of the routes share the same links. The drivers decide at 
each intersection which outgoing link they will take from there. 
There are typically one to five links to choose from. Each driver 
has predictors to anticipate the usage level of the links as a 
percentage of the link’s capacity. A predictor maps a history of 
previous usage levels to a prediction of the current usage level. A 
driver will choose the link with the minimum predicted usage. At 
the end of the trip, a driver will compare the experienced travel 
time with the expectation and score the predictors accordingly. By 
scoring the predictors, drivers can select the best predictor with 
highest score to use for prediction of the link usage in the next 
iteration. If several predictors share the highest score, one will be 
chosen randomly from them.  

The algorithm of our proposed approach is given below. 

Algorithm Hybrid Traffic Assignment Approach 
1. For each driver 

1.1. For each node i in the developing route 
1.1.1. For each link j in the driver’s list for node i 

1.1.1.1. Select best predictor for link j 
1.1.1.2. Predict the percentage usage by 

mapping current link history to the 
best predictor 

1.1.2. End For 
1.1.3. Select link l with minimum weighted 

prediction 
1.1.4. Set the current node i to the end node of link l 
1.1.5. End For 

1.2. End For 
2. Update the link histories for each driver for the links 

they travelled 
3. Update the score of the predictors used by each driver 

for each link 
4. Calculate experienced/actual travel time for each 

driver along their OD pair 
5. Calculate new weights for each link using the current 

experienced travel time.  

4.2.1 Number of Agents 
Challet and Zhang’s original MG could only be applied to an odd 
number of agents. This was necessary to determine the minority 
side. However, in our traffic scenario, we are applying the 
concept of the MG without the limitation of odd numbers of 

Route 1 
A 

O D
B Route 2 

Figure 2. The simplest two-route scenario 
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Figure 3. A complex road network used to test and 
evaluate our proposed method 
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agents as the success of a choice is not determined by minority 
allocations but according to the actual travel times experienced. 

4.2.2 History 
In MG, the history is merely an indication of the winning 
alternative. In TA, we have more than two alternatives to choose 
from. Therefore, the history is a percentage of road usage with 
respect to the capacity of the road. A history of 80-120-90 
indicates that a driver experienced road usages of 80%, 120% and 
90% capacity on three consecutive occasions. The range of the 
historic usage values is limited to between 60 and 140 as we 
found through experiment that values smaller than 60% or larger 
than 140% usage are of no consequence in the decision-making. 

4.2.3 Predictors 
The predictors had to be modified to match the historic values 
expressed in percentage of usage. This generalises the 
applicability of the approach from a distinct two choices to an 
unknown number between zero and ten. In El-Farol bar problem, 
the predictors predict the exact number of attendants, which leads 
to an unmanageable length of the predictors. In our hybrid 
approach, the predictors predict an approximate percentage of 
congestion on the roads. If the length of a predictor is Lp and 
number of possible history Lcomb, each (Lcomb/Lp) sequential 
combinations will predict the same approximate prediction. Table 
2 shows two predictors for a history length of three. According to 
these predictors, if the history is 60-60-60 or 60-60-61, predictor 1 
will predict 91% and predictor 2 will predict 120% congestion on 
the road.  

Table 2. The mapping of a predictor 

Possible history  Predictor 1 Predictor 2
60 60 60 

 91 120 60 60 61 
. 
. 
. 
.  

. 

. 

. 

. 

. 

. 90 91 92 
90 92 91 

 107 93 . 
. 
. 
. 
. 

 . .
 . .

 117 101 
140 140 140 

     

4.2.4 Decision Making 
In MG and El-Farol bar problem, the agents take the actions 
according to the prediction. In this work, we let the drivers choose 
the link which has the minimum weighted prediction. The weight 
is the ratio of the actual travel time for the route taken and the 
expected travel time and is calculated as 

*R

R

ETT

ATT
W   (1) 

Here, RATT is the actual or experienced travel time on route R , 

and *RETT is the expected travel time of a driver between the OD 

pair on the optimal route R*. The optimal path is the path which 
includes the minimum number of nodes as we are not considering 
the physical distances between the nodes. If some routes share the 
same number of nodes, one was chosen randomly. The drivers are 
assumed to have an approximate impression of the current road 
usage based on their current observations as well as previous 
experience. RATT  and *RETT are calculated as 





Ra

aR ttATT  (2) 

])(1[ 2

*
*

a

a

Ra
aR C

eX
ffttETT  


 (3) 

Where att  is the travel time on link a , which is calculated as 

])(1[ 
a

a
aa

C

X
fftttt   (4) 

Where afftt is the free flow travel time, aC and aX are the 

Capacity of and number of cars on the link a , 
respectively, and  are two control parameters [12]. aeX is the 

expected number of cars on the link a of the optimal route R*. 

4.2.5 Updating the Predictors’ Scores 
The score of the predictor is calculated as follows. 

Raatata ATTXC ]1)/[()1( ,1,    (5) 

Where, ta, is the score of the predictor for link a at time t , 
and  is a number in the range {0,1}. Note that if the number of 

cars on the link exceeds the capacity, ]1)/[( aa XC will become 

negative, which decreases the score, otherwise it increases the 
score. 

5. EXPERIMENTAL SETUP 
The road network used in these experiments consists of the nodes 
and links shown in figure 3. The drivers have their OD pairs and 
thus they have several alternative routes/paths which consist of 
sets of links. In the decision-making, we only consider 
unidirectional links. We can reasonably assume that drivers who 
commute are aware which links are options for a route to the 
destination. Also, we assume that the cars from the opposite 
direction have no effect on our drivers’ travel time. 

 

 

 
 

In our initial problem instance, there are 1001 drivers travelling in 
the network. The network has 10 nodes which represent 
intersections, 24 links which represent the roads. Each link has a 
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Figure 4. Box-and-Whisker Chart for average travel time 
(minutes) for the drivers of each OD pairs

Figure 6. Comparison of average actual and expected travel 
times for each OD pair. Solid and dotted bars represent the 
actual travel times for hybrid approach and random choice 

respectively and the squares represent the ETT.
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Figure 5. Standard Deviation of average travel times 
experienced by the individuals of each OD pair over 50 

iterations.
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capacity which was assigned randomly in a range {130, 250}. 
There are three origins and three destinations, resulting in nine 
combinations of OD pairs. Nodes 1, 2 and 3 are origins i.e. cars 
start their trip from nodes 1, 2 and 3. Nodes 8, 9, and 10 are 
destinations. Each driver knows the last m = 3 trips’ history as 
percentages of usage of the links. Each driver has 2 predictors for 
each link in all possible routes between the OD pair. Each driver 
has a list of possible links for each node. We assume that each 
driver expects that there would be eX number of cars on each link 
being part of the optimal route. If the number of drivers for an OD 
pair is n, eX is in the range of {n-50, n+50}. The control 
parameters  and  in (2) were set to 1  and 2 . 

6. RESULT AND DISCUSSION 
The contribution of our proposed method is twofold – we attempt 
to achieve a fair distribution of cars on the road network in 
proportion to the capacity of the roads as well as reasonable travel 
times for the drivers. Consequently, to establish the quality of the 
solutions created by the algorithm, the distributions resulting from 
the MG-based traffic assignment algorithm were compared with 
an optimal distribution, defined as the distribution of the vehicles 
in proportion to the capacity of the links. The optimal distribution 
was calculated at each node by distributing the cars present at the 
node in proportion to the capacity of the possible outgoing links 
from the node. We also compared our result with the result of the 
most intuitive method – the random choice, which is the natural 
alternative when drivers are choosing among several options 
given incomplete information. 

Figure 4 shows the box-and-whisker chart of the average travel 
times of the drivers of each OD pair over 50 iterations. We 
observe that the distribution of average travel times for each OD 
pair is compact with few outliers, which is an indication of the 
fairness of our algorithm. The outliers with above-average travel 
times are often caused by situations in which the drivers had no 
other alternatives but to choose a congested link, as all less 
crowded links were not compatible with the route towards the 
destination. Even in the worst cases, these disadvantaged drivers 
experienced travel times which were only six to seven minutes 
longer than those of the majority of drivers within the 
interquartile range. 

 

 

 

 

 

 

 

 

 

Figure 5 shows the standard deviation of the average travel times 
experienced by the individuals of each group over 50 iterations. It 

illustrates that the travel times experienced by the individuals of 
the OD pairs varied between 3 and 5 ½ minutes (5 minutes 30 
seconds) which establishes the degree of fairness in the 
distribution of the travel times for the individuals of the OD pairs. 

Figure 6 shows a comparison between the average 
actual/experienced travel times for our hybrid approach (solid 
bars) and for the random choice approach (dashed bars). The 
expected travel times (dots) for the drivers of each OD pair are 
also included. All results are averaged over 50 iterations. The 
expected travel time for each driver is calculated using equation 
(3). There we can observe that the expected and experienced 
travel times are very close when our hybrid approach is used, but 

consistently further apart when the drivers choose randomly. 
Random choice leads to travel times which are significantly above 
the expectation as well as the travel times achieved by the hybrid 
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Figure 7. Comparison of optimal and actual numbers of cars on 
the links with the dots indicating capacities 
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approach. This indicates that the algorithm is efficient at 
distributing the cars to avoid unnecessary congestion on the roads. 

The distribution of cars on the roads is shown in Figure 7 where 
the solid bars represent the optimal number and the dashed bars 
represent the actual number of cars on the roads. The dots 
represent the capacities of the roads. For most links, the 
distribution of the cars is close to the optimum. For the most part, 
the cars distributed themselves in proportion to the capacity of the 
roads. The differences between the optimal and actual distribution 
is reasonable as the drivers are experiencing travel times within 
their expectations. However, our future work is to reduce this gap 
between the optimal and actual distribution. 

 
 

 

 

 

 

 

 

 

 

 

 

We repeated the experiment using 2001 drivers and the same 
parameters for the network. We observe an equivalent outcome 
with a distribution that is close to the expectation with few 
outliers. 

7. CONCLUSION 
This work shows that MG can be helpful in facilitating the self-
organisation of traffic to form a balanced distribution on the 
roads, which ultimately benefits all participants through shorter 
travel times. In practice, this approach might be integrated into 
existing guidance systems.  

Although we could not ensure the utilisation of all roads 
according to their capacities, only few roads were overused, and 
this congestion was attributable to an absence of alternatives for 
some drivers. As the average experienced travel times of the 
drivers are close to the average expected travel times, we can 
conclude that our proposed approach is an improvement on the 
state of the art. It alleviates problems observed by other 
researchers when drivers make informed decisions unassisted. 
Even in a software-assisted scenario, we expect that not all drivers 
will follow the recommendations. In future work, we will explore 
the performance of our approach in the presence of drivers who 
do not use our approach. 
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