Estimating Functional Agent-Based Models: An
Application to Bid Shading in Online Markets Format

*
Wei Guo
Applied Mathematics &
Statistics, and Scientific
Computation Program,
Department of Mathematics,
University of Maryland,
College Park, Maryland, USA
weiguo@math.umd.edu

ABSTRACT

Bid shading is a common strategy in online auctions to avoid
the “winner’s curse”. While almost all bidders shade their
bids, at least to some degree, it is impossible to infer the
degree and volume of shaded bids directly from observed
bidding data. In fact, most bidding data only allows us
to observe the resulting price process, i.e. whether prices
increase fast (due to little shading) or whether they slow
down (when all bidders shade their bids). In this work, we
propose an agent-based model that simulates bidders with
different bidding strategies and their interaction with one
another. We calibrate that model (and hence estimate prop-
erties about the propensity and degree of shaded bids) by
matching the emerging simulated price process with that of
the observed auction data using genetic algorithms. From
a statistical point of view, this is challenging because we
match functional draws from simulated and real price pro-
cesses. We propose several competing fitness functions and
explore how the choice alters the resulting ABM calibration.
We apply our model to the context of eBay auctions for digi-
tal cameras and show that a balanced fitness function yields
the best results.
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1. INTRODUCTION

In this paper, we propose a method for calibrating agent-
based models to functional data. We focus specifically on
functional data [19], because ABMs are often used to model
processes where emerging phenomena are measured over time.
Repeated application of the same ABM then results in mul-
tiple replications of the same measurement-process and we
can interpret this process as a functional observation. We
propose the use of a genetic algorithm (GA) [10] in a func-
tional data analysis framework to calibrate a complex ABM.

We test and apply our methodology in the context of on-
line auctions. In particular, we are interested in quantifying
bidders’ propensity to shade their bids, that is, their aver-
sion to risk. Bid shading is related to the “winner’s curse”
[1], that is, bidders, recognizing that winning an auction is
conditional on being the most optimistic bidder about an
item’s worth, respond strategically by lowering their actual
bids below their WTP [2]. In an auction setting, bid shading
cannot be directly observed and we thus propose the use of
ABMs to infer it from observable data.

To that end, we design an agent-based modeling frame-
work with each bidder represented as an agent who has to
make several repeated decisions: whether to place a bid,
when to place a bid, how much to bid and whether the bid-
ding process should be repeated once another bidder places
a higher bid. In a real auction setting, the cause for each
of these decisions cannot be observed directly. We hypoth-
esize that the reasons are linked (among other things) to a
bidder’s willingness to take on risks and hence “equip” our
bidding agents with varying levels of bid shading. Using our
proposed methodology, we identify the model parameters
which most closely match real auction data using several
different fitness functions and find that most of the bidders
are averse to the risk of overpaying (i.e. they prefer to make
conservative bids despite a high willingness to pay).

This paper is organized as follows. In Section 2, we will
review related research on agent based modeling, internet
auctions and genetic algorithm. Section 3 gives an overview



of the data and describes exploratory analyses. In Section 4
we provide a detailed specification of our agent based model.
In Section 5, we discuss calibration of the proposed agent
based model to real auction data and model identifiability.
Section 6 discusses model results and inferences. In Section
7, we conclude with future research directions.

2. LITERATURE REVIEW

One of the main reasons for the recent increase in pop-
ularity of agent-based models is that it enlarges the set of
questions we can explore [17]. In contrast to classical statis-
tical models which rely on restrictive — and at times unrealis-
tic — assumptions (such as linearity, homogeneity, normality
and stationarity) which are often imposed for mathemat-
ical analysis and proof rather than practical applicability,
agent-based models operate within a framework of minimal,
simple and very realistic rules. As a result, ABM allows
researchers to examine issues that have been avoided previ-
ously in theoretical disciplines and for which mathematical
and analytical derivation is impossible [3].

We apply the ABM framework to the context of online
auctions. The spectacular growth of internet auctions and
the availability of massive amounts of auction data has lead
to new insights into bidder-seller behavior [4, 11, 8, 25], the
impact of the auction format [20], the auction process [27,
24, 1, 5, 13, 22] and its dynamics [18, 6]. However, while
most of the extant literature focuses on behavior that is di-
rectly measurable from observed data (such as the timing
and the magnitude of individual bids), we are interested
in behavior that is unobservable. In particular, we are in-
terested in bidders’ propensity to shade their bids, that is,
the extent to which bidders bid below their true willingness
to pay. In an auction setting, bid shading can not be di-
rectly observed but it is reflected in the amount and timing
of their bid increment. For instance, a risk averse bidder,
who is afraid of overpaying for an item, will bid closer to
the minimum required bid amount (despite having a much
higher willingness to pay). On the other hand, an aggressive
bidder, who cares more about winning than the final price,
will bid high (i.e. closer to his true willingness to pay) early
to deter other bidders and thus to increase his own chances
of winning. The difference between a bidder’s willingness to
pay and his actual bid is often referred to as the amount of
the shaded bid and we can view it as a measure of a bid-
der’s riskiness. In this work, we will infer the distribution of
shaded bids using ABMs.

We calibrate our ABM via a genetic algorithm (GA) [12,
10] that searches for the degree and volume (i.e. the dis-
tribution) of bid shading that best matches the observed
data. Weinberg [26] proposed one of the earliest applications
of GAs to characterize the parameters of a cell simulation.
Later, Miller [16] proposed the use of nonlinear optimization
techniques for a variety of model-exploration and -testing
tasks, dubbed “Active nonlinear testing” or ANT [16]. In
recent years, GA has been used for several parameter search
tasks in the context of ABMs in a variety of domains includ-
ing: ant food foraging [7], consumer retail environments [15]
and viral marketing strategies [23].

3. ONLINE AUCTION DATA

The dataset used for this study is based on 1104 new
Canon SD1000 digital camera auctions sold on eBay.com.
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Table 1: Bidder characteristics of the digital camera
auctions. A high bid increment is defined as an in-
crement of at least 100% over the previous bid. A
low bid increment is defined as an increment of less
than 5% increment over the previous bid.

Mean Std. dev.
Number of bidders per auction 8.2 4.0
Number of repeat bids per bidder 0.97 3.63
Prop. of early bidders 15.9%
Prop. of last-minute bidders 10.8%
Prop. of high bid increments 13.8%
Prop. of low bid increments 37.8%
Prop. of bidders with more than 1 bid 26.6%

eBay is the world’s largest internet market place with more
than 90 million active users globally. The eBay website uses
a proxy bidding mechanism, in which the highest bidder
wins and pays the second highest bid amount of the auction
plus a minimum increment!. One thing worth noting is that
the auction mechanism of eBay shows the current second
highest bid as the current auction “price” and the system
does not reveal bidders’ real bid until they are out-bid by
others, thus the highest bid of an auction is not revealed
on the eBay website. By contrast, our dataset which was
obtained directly from eBay contains the real bid of each
bidders. Since all the auctions sell the identical product, we
are controlling for heterogeneity due to product differences.
In addition, there are many repeat sellers (“PowerSellers”)
and we hence also have very little variation due to sellers.
Moreover, most auctions share a similar format. Thus, most
of the variability we observe is due to the bidders and their
different strategies. This is summarized in Table 1.

Table 1 shows that, despite a very homogeneous auction
setting (i.e. same product, similar bidder and similar auc-
tion format), bidders’ behavior ranges vastly. For instance,
while only 15.9% of all bidders place bids early (within the
first 10% duration of the auction), even fewer (10.8%) place
them within the last minute?. Moreover, while 13.8% place
bids higher than 100% over the previous bid (“high bid in-
crement”), many more bid more conservatively (i.e. 37.8%
with a low bid increment). This shows that bidders’ strate-
gies vary enormously. In fact, differences in timing and mag-
nitude of bidders’ bids suggest that there exist enormous va-
riety in bidders’ willingness to assume risk; in other words,
the data suggests that some bidders shade their bids much
more than others.

While Table 1 suggests that there are differences in bid-
der’s strategies, simple summary statistics cannot capture
the interaction of bidders’ behavior. Bidders compete against
one another [11] and they react to each others’ moves. In
fact, a bidder’s strategy might adjust as a result of other
bidders’ actions. Measuring the reaction of one bidder to

!The incremental amount is predetermined based on the
current high bid on the item. The incremental table of
eBay auctions is available at http://pages.ebay.com/help/
buy/bid-increments.html, which is also been adopted to our
ABM.

2Last-minute bidding is often regarded as one of the most
popular bidding strategies [2].
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Figure 1: Price Curves of observed eBay auction
data.

another bidder’s action is impossible. However, what we are
able to measure is the emerging phenomenon, that is, the
resulting price and the rate at which price changes. Take a
look at Figure 1 which shows prices curves for all auctions in
our data. We can see that, despite the homogeneity of the
product, the seller and the format, price curves vary dras-
tically, with some curves moving very slow initially, only to
speed up towards the end. In contrast, other price curves
climb fast during the early stages of the auction and level-off
later. This change in dynamics (fast price increase vs. price
deceleration) is a result of different bidders and their interac-
tion with one another. In other words, the price curves (and
in particular their shape) allow us to capture the action and
reaction of bidders to one another and the change in their
behavior. By focusing on the shape of the price curves (and
their dynamics), we adopt a point of view that borrows ideas
from the field of Functional Data Analysis [19, 9, 27, 24].

4. FUNCTIONAL AGENT-BASED MODEL
FOR ONLINE AUCTIONS

As mentioned earlier, our objective is to understand bid-
ders’ propensity to shade their bids, which is unobservable.
To that end we develop a model which simulates different
levels of bid shading. Bidders’ actions (including their will-
ingness to assume risk) are interconnected in the sense that
the timing and magnitude of one bidder’s bid will influence
the reaction of all remaining bidders. As pointed out above,
the interplay between action and reaction is observable only
in the price curve and its shape. To that end, we view the
output of the agent based model as a functional object, and
compare it with the observed price curves. In what fol-
lows, we explain how to model this price curve by making
assumptions only about the individual bidder-level interac-
tions. In the subsequent section, we will then propose ways
for matching this simulated price curve to observed price
histories from real auctions data.

4.1 Model Parameters

An online auction (such as on eBay.com) consists of sev-
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eral key components: an item to be sold, a seller selling
that item, an auction format that describes the rules of the
transaction and a set of bidders. In the following, we de-
scribe each of these components separately.

4.1.1 The Item’s Value

The item’s value is given by the bidder with the highest
willingness to pay (WTP). Different bidders possess different
WTPs since information about an item’s value is gathered
from a variety of sources, including internet search, in store
prices and advertisements. As a result, bidders’ evaluations
tend to fluctuate randomly around the average market value.
While the WTP distribution could have a variety of differ-
ent shapes, we do not have any reasons to assume anything
different but a symmetric shape. In fact, it is quite plausible
that some bidders value an item above the retail price while
it is below market value for others. Theoretical modeling
(e.g. [14]) thus often assumes a uniform distribution, typi-
cally out of mathematical convenience. We generalize this
assumption by allowing for a Normal fluctuation around the
item’s market value, i.e. we assume a Normal distribution
for bidders’ WTP:

wW,; ~ Normal(fiw, Uﬁ,).

As pointed out earlier, bidders’ actual bids might be differ-
ent from their WTP to the winner’s curse and the resulting
propensity to shade bids. We will thus model bid shading
explicitly further below.

4.1.2 The Seller and the Auction

As pointed out above, our data is very homogeneous in
terms of the seller characteristics and the auction format.
We will hence only allow variation in the starting price and
assume other auction parameters are constant in our simula-
tions. In our simulations, we model the variation in starting
prices using a re-scaled Beta distribution because it provides
the best fit to the observed variation in starting prices. Also,
the length of auctions are standardized to 10 days.

4.1.3 The Bidders

Most of the dynamics of our simulation are focused on
bidders and their interactions with one another. Bidders’
strategies are determined by three key elements: (1) the
number of competing bidders, (2) the timing and (3) the
magnitude of the bid.

A) The Number of Bidders

The number of bidders determines the overall level of com-
petition in an auction and more bidders competing for the
same item usually results in an increase of the final price.
We distinguish between the number of potential bidders and
actual bidders. A potential bidder might be interested in
the auction, and she might monitor the auction progress,
but she might never decide to place a bid because the cur-
rent price might be higher than her own willingness to pay.
Thus, the number of actual bidders is a subset of the total
number of potential bidders. We model the number of po-
tential bidders according to a Poisson distribution, which is
a common assumption for bidders’ arrival rate [21, 24]. The
number of potential bidders of each auction is draw from a
Poisson distribution in the beginning of the simulation and
this number will not change thereafter.



B) The Bid-Timing

Each of the potential bidders engages in a hierarchical
decision process. Upon a bidder’s arrival, first she decides
whether or not to place a bid. She may not place a bid
because the current bid is higher than her willingness to
pay. Also, if a bidder is revisiting an auction and is still
in the lead, she may decide not to bid again (and outbid
herself). As a result, not all potential bidders’ arrival events
will result in actual bids. Thus, the actual bids are a subset
of all arrival events. After a bidder decides that she will
place a bid, she decides how much to bid based on both the
auction price and her own willingness to pay. The details of
the bid amount will be discussed further below. At the time
of a bidder’s first arrival, she decides how often to check back
(i.e. revisit). Since some bidders place multiple bids in the
same auction, the bidder’s first time of visit ¢ ;,1 is modeled
separately from potential revisits tx,; ;,7 > 2. The reason
we separate each bidder’s time of first visit from revisits
is that a bidder’s time of first visit, tx,; = tx,; — 0, could
be very different from subsequent revisiting time intervals,
th,ij — th,ij—1,J > 2. For example, a bidder may notice an
online auction very late, but since she is very interested in
the auction, she revisits the auction frequently. Thus, this
bidder will make her first visit to the auction very late, but
subsequently revisit that auction in very short time intervals.
On the other hand, there exist bidders who bid very early
once but rarely come back to check the auction. Therefore
these bidders will have a very early first visit, but longer
time intervals for their revisits, and some may never return
to the auction.

As a result, we model bidders’ first arrivals in the following
way. After generating the total number of bidders in an
auction, the beta distribution is used to generate a bidders’
first arrival time. That is, the first arrival time of bidder ¢
in kth auction is given by

tri1 = Tk X Xk, Xi,i ~ Beta(ay, Bt)

We then generate a bidder’s revisiting time using a Pois-
son process. For a Poisson process, if the given number of
arrivals in [t1,t2] is n, then the n unordered arrival epochs
are i.i.d. uniformly distributed on [¢1, ¢2]. Following this as-
sumption, each bidder’s time epochs of revisit are generated
in two steps. First, each bidder’s number of revisits ny ; is
drawn from a Poisson distribution. Then, bidder ¢’s time
of revisits are generated from uniform distribution on the
interval [tgi,1, Tk]-

C) The Bid-Amount

The bid amount is dependent on the current price: a bid-
der will decide the amount of her bid after checking the cur-
rent auction price. More specifically, three factors typically
influence how much a bidder will bid: (1) the current auc-
tion price, (2) the bidder’s own WTP and (3) the bidder’s
sensitivity to risk (i.e. the amount of bid shading).

We model bid shading in the following way. Let pg,,
0 < pk,i < 1, denote the amount by which a bidder bids
below her WTP, where pi,; is drawn from a Beta distribu-
tion, pk,; ~ Beta(ay, 8,). The Beta distribution allows for
flexibility in capturing different volume and degree of bid
shading. For instance, Figure 2 shows examples of the Beta
distribution for six different parameter pairs (a,,,). We
can see that (ap,B,) = (1,1) (top left corner) results in a
uniform distribution; the implication of that distribution is
a pool of bidders with very diverse amounts of bid shading,
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Figure 2: Probability Density Function of Bid Shad-
ing based on the Beta distribution

Table 2: List of Variables in the ABM.

Notation Definition Distribution

Ny, Number of bidders  Poisson(An)

Py Starting price 180-Beta(ay, Bp)
W, Willingness to pay ~ Normal(jt., 02,)
Pk.i Bid shading Beta(a,, 8,)
Nk,i,j Number of revisits ~ Poisson(Are)

th,in First visit time 10-Beta(as, B¢)
th,i,j Revisit times j > 2  Uniform[ty ;,1, 10]

with some bidders shading their bids almost entirely while
others do not shade their bids at all. The bottom right
(ap, Bp) = (0.1,5) shows an example of a very right-skewed
bid shading distribution; in that case, most bidders would
shade their bids almost entirely while only few bidders bid
close to their WTP; we can think of this scenario as one of
very conservative bidders. In contrast, the top right distri-
bution (ay, B,) = (5, 1) is highly left-skewed and represents
bidders who bid very aggressively (i.e. close to their WTP).
We will come back to these bid shading scenarios in subse-
quent analyses.

Let Py,m denote the current price, and let Inc(Py,m) de-
note the minimum bid increment; recall that wy ; denotes
the bidder’s WTP. We then model the bidder’s mth bid
in auction k as the current price plus required increment,
plus the shaded difference between the WTP and Py, +
Inc(Pym); or:

Biym = Piym +Inc(Pre,m) + (Wk,s — Preym — Ine(Pr,m)) X pri-

4.2 Simulation Implementation

After generating the simulation variables, we construct an
agent-based model that simulates each bidder’s arrival event
according to a decision-making process. Upon a bidder’s
arrival at an auction, she first checks whether she is the
current winner of the auction. If so she will just leave the
auction as is, otherwise she will check the current price of the
auction. If the minimum required bid amount is lower than
her WTP, she will make a bid, otherwise she will leave the
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Figure 3: Simulated Price Paths for different levels
of bid shading.

auction. Her bid amount, denoted by By, is affected by the
current price Py, , her own WTP wy ;, and bid shading px;.
There are two possible scenarios after the bidder bids, since
the current price that is shown is only the second highest bid
of the auction: (1) If the new bid is higher than the previous
highest bid, the bidder becomes the current auction leader
and the new bid becomes the highest bid of the auction,
or (2) the current bidder is automatically overbid and the
bidder of the previous highest bid is still the leader, but
the current price of the auction is updated to the current
second highest bid plus the minimum bid increment. After
the bidder makes a bidding decision (including whether to
bid and the bid amount) and the auction price is updated,
the simulation goes to the next arrival event.

4.3 Visual Parameter Estimation

In order to implement this ABM, we need to calibrate the
parameters from Section 4.1. Table 2 lists all the 7 variables
and their associated 10 parameters used in our ABM. For
most of these variables, we can observe data directly, thus
the corresponding parameters are estimated using maximum
likelihood.

However, bid shading is unobservable. Figure 3 illustrates
the price path of 100 simulated auctions with four differ-
ent distributional assumptions (see Figure 2) for the bid
shading parameter py,;, and all other parameters kept their
estimation values (will be discussed in Sec 6.2). The top
row represents situations in which bidders bid conservatively
(left panel) or aggressively (right panel) and the bottom row
shows symmetric situations (uniform bid shading in the left
panel, bell-shaped bid shading in the right panel). We can
see that for conservative bidding, price increases very slowly
and there is large variation in the closing price. On the
other hand, with mostly aggressive bidders, price increases
quickly, the closing price is higher and exhibits less varia-
tion. Finally, in the case of symmetric bid shading, there
is more variation in the price paths. It is interesting that,
at least from a pure visual inspection, the simulated price
curves pertaining to the conservative bidders (top left panel
in Figure 3) best resembles the observed data in Figure 1. In
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other words, it suggests that the degree and volume of bid
shading in real eBay auctions could be characterized by a
Beta distribution with parameters 1 and 5. However, while
such a visual matching provides some initial insight, it is
not precise. To that end, we now derive a method via the
genetic algorithm.

5. ESTIMATION VIA GA

In order to use GA to calibrate our auction ABM, the
first step is to define a proper fitness function. Note that
our task involves matching observed (Figure 1) and simu-
lated (Figure 3) price curves. Since matching a sample of
simulated curves to a sample of observed curves is challeng-
ing, we propose to match corresponding summary curves in-
stead. That is, we propose to match the mean curve of the
simulated data (p(t)**™) to the mean curve of the observed
data (p(t)°%*). Similarly, in order to capture variability in
the observed price curves, we also match the corresponding
standard deviation curves (o (¢)*™ and ¢ (¢)°**). And finally,
since we have argued earlier that the shape of the price curve
is of particular importance, we also match the correspond-
ing first and second principal component curves (PC1(t)*"™,
PC1(t)°% and PC2(t)*'™, PC2(t)°"), respectively®.

Figure 4 illustrates these four summary curves for the ob-
served (red circles) and simulated (thin lines) data. We can
see e.g. in the leftmost panel that the mean of the sim-
ulated curves (u(t)*™™) pertaining to Beta(1,5) (blue line)
best tracks the mean of the observed price curves (u(t)°*®).
On the other hand, the standard deviation curve (o (t)*™)
pertaining to Beta(0.1, 5) (pink line) is most dissimilar com-
pared to the corresponding standard deviation curve of the
observed data (second panel). Overall, while these sum-
mary curves allow some comparison between simulated and
observed data, detecting the best match is hard, at least
visually.

To that end, we define a fitness function across all four
summary curves. In fact, we propose a weighted root means

3The first and second principal component curves capture
trends (e.g. up/down) or curvature (e.g. concave/convex)
of functional objects; see e.g. [9].



squared error (RMSE) criterion of the following form:
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Our ABM and GA selection of parameters are imple-
mented in the freely available software R. We implemented
the GA using the “genalg” package in R, with a few mod-
ifications to better measure the results. The GA is used
to optimize 6 parameters of the ABM. Each parameter is
specified by a real number, so each individual in the GA
is composed of 6 genes that represent a potential parame-
ter set of our ABM. To evaluate the corresponding fitness
function of each individual, 1000 simulations are carried out
to generate summary price curves. The population size of
the GA is 100 and the number of iterations is 100. So,
in total there are 1000 simulations x 100 individuals x 100
generations = 10, 000, 000 simulated auctions used in the es-
timation process. In each iteration, the 20 best individuals
are kept for the next generation (elitism), while the other 80
pairs of parents are randomly selected (each pair of parents
only have one offspring). The crossover rate is 60% and the
mutation rate is 5% per gene. The range of each parameter
are based on inference from visual inspection and simulation
experiments.

6. RESULTS AND DISCUSSION
6.1 Fitness Function Weighting

First, we investigate the impact of the weights w; on the
fitness function. To that end, we investigate three different
scenarios: In scenario 1, we set w1 = 0.75, w2 = 0.25, and
ws = wyq = 0; this scenario only uses the mean and standard
deviation curves and hence ignore the shape of the price
curves via PC1 and PC2. Scenario 2 is reversed and puts
all weight on the shapes PC1 and PC2 and no weight on
the mean and standard deviation curves (i.e. w1 = w2 = 0,
and ws = 0.75 and ws = 0.25). And finally scenario 3
uses all four components in a balanced form via w; = 0.35,
we = 0.15, ws = 0.35 and wyq = 0.15.

We first examine these three scenarios on a synthetic data
set. That is, we generate data with a known set of parame-
ters and then use GA to extract the original underlying bid
shading parameters. The results of this experiment is given
in the left panel of Figure 5. We can see that the results
are very robust to the choice of the weights on the synthetic
data. In other words, regardless of the choice of the weights,
the algorithm produces (almost) the identical result.

We repeat the same experiment on the observed data and
find that the outcome is more sensitive to the choice of the
weights (right panel of Figure 5). While the outcome is more
variable, we do observe that, regardless of the choice of the
weights, the method estimates a right-skewed distribution
for bid shading. Thus we can conclude that while the choice
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Figure 5: Different Fitness Function Settings and
Resulting Probability Density Function of Beta Dis-
tributions of Synthetic and Real Data

Table 3: RMSE

Weighting m o PC1 PC2
Setting 1 0.03696 0.07417 0.00746 0.01451
Setting 2 0.25209 0.06321 0.00488 0.01146
Setting 3 0.03765 0.05276 0.00505 0.00671

of the weights matters, it does not impact the results too
much in that, qualitatively, our overall conclusions remain
the same.

Finally, in order to evaluate the difference between the
different fitness function weighs, we examine the RMSE of
the resultant components of the price curves, i.e, u, o, PC1
& PC2 for the three different settings and the real data. The
hypothesis is that if one of the three fit the data better on
all four components that would be the best choice for the
weighting. Table 3 and Figure 6 shows the results. We can
see that scenario 3, which uses both the mean and standard
deviation curves as well as the shapes captured by PC1 and
PC2, provides the best results on almost all four RMSE
values with RMSE of PC1 a little greater than the scenario
2, so for the rest of this paper we will utilize this scenario.

6.2 Estimation Result

We now apply our algorithm to the eBay auction data
in the following way. As pointed out earlier, we estimate
some of the ABM parameters directly from the data (e.g.
starting price and each bidder’s first visit time) using max-
imum likelihood estimation. For other parameters, we use
maximum likelihood estimates as starting values and then
update these values inside the GA. The reason we combine
this two method together is that it is only possible to get
good initial values of parameters by just using MLE. For
example, the average number of different bidders in each
auction is a good initial value for the arrival rate of bidders,
but we would expected the true parameter is greater then
the observed average, because there are potential bidders
that checked the auction status but did not bid [6]. Simi-



Mean Curve

Std. Curve

1st PC

000

——  Four componentsf
— Mean and std
—— 1stand 2nd P

000

005

010

020

Rt 0

0o 2

P
Time

Time

P
Time

Time

Best and Mean Evaluation

0.10 0.15
I I

Fitness

0.05
I

0 20 40 60 80 100

lterations

log(Fitness)

Log-log Plot of Mean Fitness

log(lterations)
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Table 4: Estimation Results

Figure 7: GA performance

from 50 iterations to 100 iterations, the weighted RMSE
drops about 22% = 1 — 1007%-3% /507935, While for an ad-
ditional step, after 100 iterations, the weighted RMSE drops
only .3% = 1 — 1017°3%/1007°3% which indicates that 100

iterations is a good stop point for the algoritm used in our

model.

Variable Parameter Method Estimation
Number of bidders Ay MLE&GA 12.35
Starting price Qyp, Bp MLE 0.17, 0.59
Willingness to pay  fiw, 02 MLE&GA  174.4, 21.0
Bid shading p, Bp GA 1.2,4.2
Number of revisits re MLE&GA 0.97
First visit time at, Bt MLE 0.58, 0.34

larly, by just using MLE from observed data, the inference
of bidders’ revisit rate A\;e and WTP wy ; would be biased.
So both MLE and GA are used in estimation of parameters.
The parameters for the bid shading distribution are esti-
mated entirely from the GA. Table 4 shows the estimation
results and the estimation methods.

6.3 Computational Error Analysis

Finally, we examine the convergence rate of our algorithm.
For simplicity, we focus the investigation only on the bid
shading parameters and hold all other parameters constant.
The left panel in Figure 7 shows the fitness performance of
GA over 100 populations. We can see that the fitness func-
tion improves rapidly over the first 20 iterations and slows
down subsequently. In the right panel of Figure 7, we fit
a linear regression line to the log-transformed fitness (Y)
and log-transformed number of iterations (X). This model
fits the data very well (R? = 0.88) and both the intercept
and slope are significant with values of -1.79 and -0.35, re-
spectively. Thus, if we let F' denote the fitness and n the
number of iterations, then the relationship between fitness
and number of iterations can be approximated by

F =0.179n"%%, (1)

From the regression, we can see that the mean fitness con-
verges toward 0. Thus, the fitness of the best individual is
also convergent to 0, since mean fitness is an upper bound of
it. Also, from the regression function we can calculate that
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7. CONCLUSIONS AND FUTURE WORK

Understanding the reason why bidders behave a certain
way allows invaluable insight into the auction process. In
this work, we shed some light on the amount by which bid-
ders shed their bids, i.e. their aversion to taking risks. We
do so by combining novel tools from functional data analysis,
agent based modeling and genetic algorithm. One obvious
benefit of the genetic algorithm is computational simplicity,
in this case we save a lot of computation time by not having
to fully iterate through the whole search space.

We find that bidders tend to bid rather conservatively,
with a bid shading distribution that is right-skewed. This
indicates the auction price might not give sufficient informa-
tion on bidders’ willingness to pay. So, if a bidder places a
bid early with bid amount close to the current price, it trig-
gers other bidders to overbid her, since the required overbid
price tends to stay in the range of their willingness to pay.
So sniping (placing bid in last minute) an auction might
be a good strategy for bidders in internet auctions to avoid
competition from other bidders.

We hope to continue this research in a number of different
ways. First of all since our final result and model should be
generalizable, we hope to explore whether we can replicate
these results in other datasets. Moreover, one limitation of
our current work is that bidders do not consider multiple
auctions at the same time; we hope to relax this limita-
tion in the future and explore multiple auctions. We also
could explore how well our weighted fitness function works
compared to a more general multiobjective fitness function.
In general, we feel that the technique presented here allows
researchers to infer unobservable parameters of a complex
system by combining GAs with ABM, while at the same



time taking advantage of the underlying temporal nature of
the data using functional data analysis.
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