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ABSTRACT

Decision tree induction is one of the most employed methods
to extract knowledge from data, since the representation
of knowledge is very intuitive and easily understandable by
humans. The most successful strategy for inducing decision
trees, the greedy top-down approach, has been continuously
improved by researchers over the years. This work,
following recent breakthroughs in the automatic design
of machine learning algorithms, proposes two different
approaches for automatically generating generic decision
tree induction algorithms. Both approaches are based
on the evolutionary algorithms paradigm, which improves
solutions based on metaphors of biological processes. We
also propose guidelines to design interesting fitness functions
for these evolutionary algorithms, which take into account
the requirements and needs of the end-user.

Categories and Subject Descriptors

1.2.6 [Induction and Knowledge Acquisition]:
learning—decision tree induction, evolutionary algorithms,
automatic design

General Terms
Algorithms

1. INTRODUCTION

A decision tree is a classifier represented by a flowchartlike
tree structure which has been widely used to represent
classification models, due to its comprehensible nature
that resembles the human reasoning. In a recent poll
of the kdnuggets website [1], decision trees figured as the
most used data mining/analytic method by researchers
and practitioners, reaffirming its importance in machine
learning tasks. Decision tree induction algorithms present
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several advantages over other learning algorithms, such as
robustness to noise, low computational cost for generating
the model, and ability to deal with redundant attributes [2].

Several attempts on optimizing decision tree algorithms
have been made by researches within the last decades, even
though the most successful algorithms date back to mid-80’s
[3] and early 90’s [4]. Several strategies were employed
for deriving accurate decision trees, such as bottom-up
induction [5], linear programming [6], hybrid induction
[7], evolutionary induction [8, 9], ensemble of trees [10],
just to name a few. Nevertheless, no strategy has been
more successful in generating accurate and comprehensible
decision trees with low computational effort than the greedy
top-down induction strategy.

A greedy top-down decision tree induction algorithm
recursively analyzes whether a sample of data should be
partitioned in subsets according to a given rule, or if
no further partitioning is needed. This analysis takes
into account a stopping criterion (for deciding when tree
growth should halt) and a splitting criterion (responsible for
choosing the “best” rule for partitioning a subset). Further
improvements over this basic strategy include pruning tree
nodes for enhancing the tree’s capability of dealing with
noisy data, and strategies for dealing with missing values,
multiple classes, imbalanced classes, among others.

Endless approaches were proposed in the literature for
each one of these design components of top-down decision
tree induction algorithms. For instance, new measures for
node splitting tailored for a vast number of application
domains were proposed, as well as many different strategies
for selecting multiple attributes for composing the node rule
(multivariate split). There are even works in the literature
that survey the numerous approaches for pruning a decision
tree [11, 12]. It is clear that by improving these design
components, we can obtain more robust top-down decision
tree induction algorithms.

The pioneering work by Pappa and Freitas [13] on
automatically evolving rule induction algorithms poses
the following question: “if by changing these design
components of rule induction algorithms can result in
new, significantly better ones, why not keep on trying
systematically?” Since the human manual approach would
be unfeasible given the vast amount of different strategies
regarding each major design component in a decision tree
induction algorithm, we propose in this paper an approach
similar to the one of Pappa and Freitas [13]: employing
evolutionary algorithms to evolve generic decision tree
induction algorithms. We propose two different strategies



for doing so: (i) a linear genome representation, in which
each major design component can be indexed by integers in
a fixed-length string, and additional real-valued parameters
can be incorporated; and (ii) a grammar-based genetic
programming approach, in which a grammar is used for
generating individuals in the form of derivation trees.
Furthermore, we suggest some guidelines for designing
appropriate fitness functions for the evolutionary algorithm.
We first review the research on decision tree induction
algorithms in Section 2, pointing out the major design
components of a decision tree induction algorithm. Then,
we detail our approach in Section 3 and we present our
conclusions and suggest future research steps in Section 4.

2. DECISION
ALGORITHMS

Automatically generating rules in the form of decision
trees has been object of study of most research fields in
which data exploration techniques have been developed
[14]. Disciplines such as engineering (pattern recognition),
statistics, decision theory, and more recently artificial
intelligence (machine learning) have a large number of works
dedicated to the generation and application of decision
trees. In statistics, we can trace the origins of decision
trees in works which proposed building binary segmentation
trees for understanding the relationship between predictors
and dependent variable. Some examples are AID [15] and
CHAID [16]. Decision trees, and induction methods in
general, arose in machine learning to avoid the knowledge
acquisition bottleneck for expert systems [14].

Specifically regarding top-down induction of decision
trees (by far the most popular approach of decision tree
induction), Hunt’s Concept Learning System (CLS) [17] can
be regarded as the pioneering work for inducing decision
trees. Systems that directly descend from Hunt’s CLS are
ID3 [18], ACLS [19] and Assistant [20].

In a higher level of abstraction, Hunt’s algorithm can
be recursively defined in only two steps. Let X¢ be the
set of training instances associated with node t and y =
{y1,92, ..., yr} be the class labels in a k-class problem [21]:
(1) if all the instances in X¢ belong to the same class y; then
t is a leaf node labeled as y; (ii) if Xt contains instances that
belong to more than one class, an attribute test condition is
selected to partition the instances into subsets. A child node
is created for each outcome of the test and the instances in
Xt are distributed to the children based on the outcomes.
Recursively apply the algorithm to each child.

Hunt’s simplified algorithm is the basis for all current
top-down decision tree induction algorithm. Nevertheless,
its assumptions are too stringent for practical use. For
instance, it would only work if every combination of
attribute values is present in the training data, and if the
training data is inconsistency-free (each combination has a
unique class label).

Hunt’s algorithm was improved in many ways. Its
stopping criterion, for example, as expressed in step 1,
requires all leaf nodes to be pure (i.e., belonging to the
same class). In most practical cases, this constraint leads
to enormous decision trees, which tend to suffer from
overfitting. Possible solutions to overcome this problem
is prematurely stopping the tree growth when a minimum
level of impurity is reached, or performing a pruning step
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after the tree has been fully grown. Another design issue
is how to select the attribute test condition to partition the
instances into smaller subsets. In Hunt’s original approach,
a cost-driven function was responsible for partitioning the
tree. Subsequent algorithms such as ID3 [18] and C4.5
[4] make use of information theory based functions for
partitioning nodes in purer subsets. Next, we present a
review of functions for partitioning nodes in a decision tree.

2.1 Selecting splits

A major issue in top-down induction of decision trees is
which attribute(s) to choose for splitting a node in subsets.
For the case of axis-parallel decision trees (also known as
univariate), the problem is to choose the attribute that
better discriminates the input data. A decision rule based
on such an attribute is thus generated, and the input data
is filtered according to the outcomes of this rule. For oblique
decision trees (also known as multivariate), the goal is to
find a combination of attributes with good discriminatory
power. Either way, both strategies are concerned with
ranking attributes quantitatively.

2.1.1 Univariate Splitting Criteria

The most well-known univariate criteria are based,
directly or indirectly, on Shannon’s entropy [22]. Entropy
is known to be a unique function which satisfies the four
axioms of uncertainty. It represents the average amount of
information when coding each class into a codeword with
ideal length according to its probability.

The first splitting criterion that arose based on entropy
is the global mutual information (GMI) [23]. Following,
the well-known information gain [18] became a standard
after appearing in algorithms such as ID3 [18] and Assistant
[20]. It belongs to the class of the so-called impurity-based
criteria.  Quinlan [18] acknowledges the fact that the
information gain is biased towards attributes with many
values. He proposes a solution for this matter called
gain ratio [4]. It basically consists of normalizing the
information gain by the entropy of the attribute being
tested. Nevertheless, the gain ratio has two deficiencies:
(i) it may be undefined (i.e., the value of self-entropy may
be zero); and (ii) it may choose attributes with very low
self-entropy but not with high gain. For solving these issues,
Quinlan suggests first calculating the information gain for
all attributes, and then calculating the gain ratio only for
those cases in which the information gain value is above the
average value of all attributes.

Several variations of the gain ratio have been proposed
(e.g., normalized gain [24], average gain [25], etc.).
Alternatives to entropy-based criteria are the class
of distance-based measures, i.e., criteria that evaluate
separability, divergency or discrimination between classes.
Examples are the Gini Indez [3], the twoing criteria [3], the
Kolmogorov-Smirnoff distance [26], among others.

2.1.2  Multivariate Splits

Decision trees with multivariate splits (known as oblique,
linear or multivariate decision trees) are not so popular
as the univariate ones, mainly because they are harder to
interpret. Nevertheless, researchers reckon that multivariate
splits can improve the performance of the tree in several data
sets, while generating smaller trees [2]. Clearly, there is a
tradeoff to consider in allowing multivariate tests: simple



tests may result in large trees that are hard to understand,
yet multivariate tests may result in small trees with tests
that are hard to understand [27].

A decision tree with multivariate splits is able to produce
polygonal (polyhedral) partitions of the attribute space
(hyperplanes at an oblique orientation to the attribute axes)
whereas univariate trees can only produce hyper-rectangles
parallel to the attribute axes. The tests at each node
have the form wo + >, wsai(z) < 0, where w; is a
real-valued coefficient associated to the i*" attribute and wo
the disturbance coefficient of the test.

CART (Classification and Regression Trees) [3] is one
of the first systems that allowed multivariate splits. It
employs a hill-climbing strategy with a backward attribute
elimination for finding good (albeit suboptimal) linear
combinations of attributes in non-terminal nodes. It is a
fully-deterministic algorithm with no built-in mechanisms
to escape local-optima. Breiman et al. [3] point out that
the proposed algorithm has much room for improvement.

Another approach for building oblique decision trees
is LMDT (Linear Machine Decision Trees) [28]. Each
non-terminal node holds a linear machine, which is a set
of k linear discriminant functions that are used collectively
to assign an instance to one of the k existing classes. LMDT
uses heuristics to determine when a linear machine has
stabilized (since convergence cannot be guaranteed). More
specifically, for handling non-linearly separable problems, a
method similar to simulated annealing (SA) is used (called
thermal training).

SADT (Simulated Annealing of Decision Trees) [29] is a
system that employs SA for finding good coefficient values
for attributes in non-terminal nodes of decision trees. First,
it places a hyperplane in a canonical location, and then
iteratively perturbs the coefficients in small random amounts
guided by the SA algorithm. Although SADT can eventually
escape from local-optima, its efficiency is compromised since
it may consider tens of thousands of hyperplanes in a single
node during annealing.

OC1 (Oblique Classifier 1) [30] is yet another oblique
decision tree system. It is a thorough extension of
CART’s oblique decision tree strategy. OC1 presents
the advantage of being more efficient than the previously
described systems. It searches for the best univariate split
as well as the best oblique split, and it only employs the
oblique split when it improves over the univariate split.
It uses both a deterministic heuristic search (as employed
in CART) for finding local-optima and a non-deterministic
search (as employed in SADT - though not SA) for escaping
local-optima.

Ittner [31] proposes using OCl over an augmented
attribute space, generating non-linear decision trees. The
key idea involved is to “build” new attributes by considering
all possible pairwise products and squares of the original set
of n attributes.

Shah and Sastry [32] propose the APDT (Alopex
Perceptron Decision Tree) system. It is an oblique
decision tree inducer that makes use of a new splitting
criterion, based on the level of non-separability of the input
instances. They argue that because oblique decision trees
can realize arbitrary piecewise linear separating surfaces,
it seems better to base the evaluation function on the
degree of separability of the partitions rather than on the
degree of purity of them. APDT runs the Perceptron
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algorithm for estimating the number of non-separable
instances belonging to each one of the binary partitions
provided by an initial hyperplane. Then, a correlation-based
optimization algorithm called Alopex is employed for tuning
the hyperplane weights taking into account the need of
minimizing the new split criterion based on the degree of
separability of partitions. Shah and Sastry [32] also propose
a pruning algorithm based on genetic algorithms.

For the interested reader, it is worth mentioning that there
are methods that induce oblique decision trees with optimal
hyperplanes, discovered through linear programming [6].
Though these methods can find the optimal hyperplanes for
specific splitting measures, the size of the linear program
grows very fast with the number of instances and attributes.

2.2 Stopping Criteria

The top-down induction of a decision tree is recursive and
it continues until a stopping criterion (or some stopping
criteria) is satisfied. Some popular stopping criteria (also
known as pre-pruning) are [2]:

1. Reaching class homogeneity: when all instances that
reach a given node belong to the same class, there is
no reason to split this node any further;

2. Reaching attribute homogeneity: when all instances
that reach a given node have the same attribute values
(though not necessarily the same class value);

3. Reaching the maximum tree depth: a parameter tree
depth can be specified to avoid deep trees;

4. Reaching the minimum number of instances for a
non-terminal node: a parameter minimum number of
instances for a non-terminal node can be specified to
avoid (or at least alleviate) the data fragmentation
problem;

5. Failing to exceed a threshold when calculating the
splitting criterion: a parameter splitting criterion
threshold can be specified for avoiding weak splits.

2.3 Pruning
Pruning (also referred as post-pruning) is usually
performed in decision trees for enhancing tree

comprehensibility (by reducing its size) while maintaining
(or even improving) accuracy. It was originally conceived
as a strategy for tolerating noisy data, though it was found
that it could improve decision tree accuracy in many noisy
data sets [3, 18, 33].

A pruning method receives as input an unpruned tree T'
and outputs a decision tree T formed by removing one or
more subtrees from 7T'. It replaces non-terminal nodes with
leaf nodes according to a given heuristic. Next, we present
the five most well-known pruning methods for decision trees
[11]: 1) reduced-error pruning; 2) pessimistic error pruning;
3) minimum error pruning; 4) cost-complexity pruning; and
5) error-based pruning.

Reduced-error pruning (REP) is a conceptually simple
strategy proposed by Quinlan [33]. It uses a pruning set (a
part of the training set) to evaluate the goodness of a given
subtree from 7. The idea is to evaluate each non-terminal
node t with regard to the classification error in the pruning
set. If such an error decreases when we replace the subtree
T® rooted on ¢ by a leaf node, then T® must be pruned.



Quinlan imposes a constraint: a node ¢t cannot be pruned if
it contains a subtree that yields a lower classification error in
the pruning set. The practical consequence of this constraint
is that REP should be performed in a bottom-up fashion.
The REP pruned tree T” presents an interesting optimality
property: it is the smallest most accurate tree resulting
from pruning original tree T' [33]. Besides this optimality
property, another advantage of REP is its linear complexity,
since each node is visited only once in 7. An obvious
disadvantage is the need of using a pruning set, which means
one has to divide the original training set, resulting in less
instances to grow the tree. This disadvantage is particularly
serious for small data sets.

Also proposed by Quinlan [33], the pessimistic error
pruning (PEP) uses the training set for both growing and
pruning the tree. The apparent error rate, i.e., the error
rate calculated over the training set, is optimistically biased
and cannot be used to decide whether pruning should
be performed or not. Quinlan thus proposes adjusting
the apparent error according to the continuity correction
for the binomial distribution in order to provide a more
realistic error rate. PEP is computed in a top-down fashion,
and if a given node t is pruned, its descendants are not
examined, which makes this pruning strategy quite efficient
in terms of computational effort. As a point of criticism,
Esposito et al. [12] point out that the introduction of the
continuity correction in the estimation of the error rate has
no theoretical justification, since it was never applied to
correct over-optimistic estimates of error rates in statistics.

Originally proposed in [34] and further extended in [35],
minimum error pruning (MEP) is a bottom-up approach
that seeks to minimize the expected error rate for unseen
cases. It uses an ad-hoc parameter m for controlling the
level of pruning. Usually, the higher the value of m, the more
severe the pruning. Cestnik and Bratko [35] suggest that a
domain expert should set m according to the level of noise in
the data. Alternatively, a set of trees pruned with different
values of m could be offered to the domain expert, so he/she
can choose the best one according to his/her experience.

Cost-complexity pruning (CCP) is the post-pruning
strategy of the CART system, detailed in [3]. It consists
of two steps: (i) generate a sequence of increasingly smaller
trees, beginning with T" and ending with the root node of T',
by successively pruning the subtree yielding the lowest cost
complezity, in a bottom-up fashion; (ii) choose the best tree
among the sequence based on its relative size and accuracy
(either on a pruning set, or provided by a cross-validation
procedure in the training set). The idea within step 1 is that
pruned tree T;y1 is obtained by pruning the subtrees that
show the lowest increase in the apparent error (error in the
training set) per pruned leaf. Regarding step 2, CCP chooses
the smallest tree whose error (either on the pruning set or on
cross-validation) is not more than one standard error (SE)
greater than the lowest error observed in the sequence of
trees.

Finally, error-based pruning (EBP) was proposed by
Quinlan and it is implemented as the default pruning
strategy of C4.5 [4]. It is an improvement over PEP, based
on a far more pessimistic estimate of the expected error.
Unlike PEP, EBP performs a bottom-up search, and it
performs not only the replacement of non-terminal nodes
by leaves but also grafting of subtree T® onto the place of
parent ¢t. For deciding whether to replace a non-terminal
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node by a leaf (subtree replacement), to graft a subtree
onto the place of its parent (subtree raising) or not to
prune at all, a pessimistic estimate of the expected error
is calculated by using an upper confidence bound. An
advantage of EBP is the new grafting operation that allows
pruning useless branches without ignoring interesting lower
branches. A drawback of the method is the presence of an
ad-hoc parameter, C'F'. Smaller values of C'F' result in more
pruning.

2.4 Missing values

Handling missing values is an important task in decision
tree induction. Missing values can be an issue during
tree induction and also during classification. During tree
induction, there are two moments in which we need to
deal with missing values: splitting criterion evaluation and
instances splitting.

During the split criterion evaluation in node ¢ based on
attribute a;, some common strategies are: (i) ignore all
instances whose value of a; is missing [36, 3]; (ii) imputation
of missing values with the mode (nominal attributes) or
the mean/median (numeric attributes) of all instances in
t [37]; (iii) weight the splitting criterion value (calculated
in node ¢ with regard to a;) by the proportion of missing
values [38]; and (iv) imputation of missing values with the
mode (nominal attributes) or the mean/median (numeric
attributes) of all instances in ¢ whose class attribute is the
same of the instance whose a; value is being imputed [39].

For deciding which child node training instance z; should
go to, considering a split in node t over a;, some possibilities
are: (i) ignore instance x; [18]; (ii) treat instance x; as if it
has the most common value of a; (mode or mean/median)
[38]; (iil) assign instance z; to all partitions [36]; (iv) build
an exclusive partition for missing values [38]; and (v) create
a surrogate split for each split in the original tree based on
a different attribute [3] - for instance, a split over attribute
a; will have a surrogate split over attribute a;, given that
a; is the attribute which most resembles the original split.

Finally, for classifying an unseen test instance zj,
considering a split in node ¢ over a;, some alternatives are:
(i) explore all branches of ¢t combining the results [40]; (ii)
treat instance z; as if it has the most common value of a;
(mode or mean/median); (iii) halt the classification process
and assign instance z; to the majority class of node ¢ [38].

3. EVOLVING FULL DECISION TREE
INDUCTION ALGORITHMS

We have presented in Section 2 the main design choices
one has to face when designing a new top-down decision tree
induction algorithm. For the past 40 years, researchers have
attempted to improve decision tree induction algorithms,
either by proposing new splitting criteria for internal nodes,
by investigating pruning strategies for avoiding overfitting,
or even by discovering new approaches for dealing with
missing values. Each new top-down decision tree induction
algorithm presents a combination of these strategies, which
were chosen in order to maximize performance in empirical
analyses. Nevertheless, the number of different strategies
for the several components of a decision tree algorithm is
so vast after these 40 years of research that it would be
impracticable for a human being to test all possibilities with
the purpose of achieving the best performance in a given
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Figure 1: A possible linear genome for top-down decision tree induction algorithms.

data set (or in a set of data sets). Hence, we pose an
important question for researchers in the area: “how can we
automate the design of a decision tree induction algorithm?”

The answer for this question arose with the work of
Pappa and Freitas [13], which proposes the automatic
design of rule induction algorithms through an evolutionary
algorithm. In their work, Pappa and Freitas propose
using a grammar-based genetic programming approach for
building and evolving individuals which are, in fact, rule
induction algorithms. The use of evolutionary algorithms
for generating decision trees has been extensively studied
(e.g., [8, 9]), but to the best of our knowledge, no work has
proposed an evolutionary algorithm to evolve decision tree
algorithms.

A recent approach called HHDT (Hyper-Heuristic
Decision Tree) [41] proposes an evolutionary algorithm
for evolving heuristic rules in order to determine the
best splitting criterion to be used in non-terminal nodes.
Whereas this approach is a first step to automate decision
tree induction algorithms, it evolves a single component of
the algorithm (the choice of splitting criterion), and thus
should be further extended for being able to generate full
decision tree induction algorithms.

In this paper, we propose two distinct evolutionary
approaches to evolve complete decision tree induction
algorithms. The first one is based on a linear genome
representation, in which each gene represents a design
component of the algorithm, ie., a building block (e.g.,
splitting criterion, post-pruning strategy, etc.). In
the second, we make use of a grammar-based genetic
programming approach, where a grammar is used for
generating coherent decision tree algorithms. We present
both approaches in the next sections, as well as some
guidelines for designing the fitness function strategy for the
evolutionary algorithm.

3.1 Linear Genome Representation

The individuals of the evolutionary algorithm can be
represented as a linear genome, in which each gene is
a building block (a design component) of the decision
tree induction algorithm. Figure 1 presents one possible
linear genome for coding a top-down decision tree induction
algorithm.

In the linear genome proposed in Figure 1, we have
12 genes, each one representing a design component or
parameter of a decision tree induction algorithm. Gene split
type can be indexed by three integers, indicating whether
the tree will hold univariate, multivariate or mixed nodes.
Gene oblique strategy can also be indexed by integers, each
one indicating the weight definition strategy for the case of
multivariate splits (this gene can be ignored if split type is
set to univariate). Gene splitting criterion defines which
criterion will be used for splitting nodes (an integer for each
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criterion). Genes nominal split and numeric split indicate
the strategies for partitioning nominal (numeric) attributes
(e.g., an edge for each attribute category (interval) of
a nominal (numeric) attribute). Gene stopping criterion
indicates the strategy used for pre-pruning, and stopping
parameter is the associated parameter (e.g., the stopping
criterion = minimum number of instances, and stopping
parameter 10). Similarly, genes pruning strategy and
pruning parameter define the pruning procedure and its
corresponding parameter. Finally, three building blocks for
missing value strategies (one for splitting evaluation, one for
partitioning instances and one for instance classification).

One possible individual encoded as a linear genome
is [2,4,1,1,2,3,0.1,4,2.0,0,1,0], which could account for
[mixed nodes, hill-climbing with randomization, gain
ratio, one-edge-for-category, binary-split, splitting criterion
threshold, 0.1, EBP, 0.33, ignore-instances, assign-to-all,
explore-all-branches|, representing a mixed-decision tree
with a hill-climbing procedure for generating weights for
multivariate splits; gain ratio as a splitting measure; one
edge for each category of a nominal attribute and a binary
split of numeric attributes; the growth of the tree stops if
the gain is inferior to 0.1; an error-based pruning with C'F =
33% is performed; and the missing values strategies are:
ignore missing values for calculating the splitting criterion;
assign the instances with missing values to every child node
during training; and explore all branches when the attribute
value is missing and choose the class-value with greater
associated probability during classification. It is easy to
notice that the linear genome representation proposed in
Figure 1 can generate algorithms such as C4.5 [4], CART [3]
and potentially many new decision tree induction algorithms
(infinite possibilities if we consider the stopping parameter
and pruning parameter as real numbers).

3.2 Grammar-based Representation

Another possibility of generating individuals for an
evolutionary algorithm that evolves generic decision tree
algorithms is through a grammar. Grammar-based genetic
programming is a specific type of genetic programming in
which we can guarantee that individuals are syntactically
correct and, in addition, we can add prior knowledge of
the task at hand. In the context of decision tree induction,
we can design a grammar that includes some well-known
strategies for decision tree induction, though it is important
we keep it flexible enough so it can generate potentially
new and effective algorithms not previously idealized by
researchers. Figure 2 presents one possible grammar for
generating decision tree induction algorithms.

The proposed grammar has 29 non-terminals (NTs).
The first non-terminal refers to the growth and (optional)
pruning of the decision tree. NT #2 refers to the recursive
growth of a decision tree until a stopping criterion is satisfied



(NTs #3, #4, #5, #6). NT #7 allows the creation of
a leaf either by associating the most frequent class to it
or by allowing a rare class (NT #8) to be selected (a
counter-intuitive action in balanced problems, but maybe
an interesting solution for imbalanced data sets). NT #9
allows the creation of internal nodes, by selecting: (i) an
appropriate missing value strategy for usage during splitting
evaluation (NT #10); (ii) a splitting criterion (NT #11)
and an optional stopping criterion (NT #17); (iii) a missing
value strategy for partitioning instances (NT #18); and (iv)
the recursive call for growing the tree. NT #11 allows
choosing among univariate trees (NT #12) , oblique trees
(NTs #13 and #14) and omni (mixed) trees (NTs #15
and #16). NT #19 offers options of post-pruning strategies
(NTs #20-28) and NT #29 allows to choose the missing
value strategy for classifying a new instance.

Figure 3 presents a derivation tree of a possible individual
generated by this grammar. The grammar can be further
extended to include new strategies with minor effort. It can
be seen as an approach that controls the initial population
so every individual is syntactically correct. In order
to guarantee that further evolved individuals keep their
syntactic correctness, the genetic operators employed must
be specially designed in order to avoid the generation of
useless solutions.

At the same time, the grammar should be flexible
enough to allow seemingly counter-intuitive actions that
a human researcher would not allow. For instance, the
grammar in Figure 2 allows leaf nodes to hold a class
label which is not the one of the majority of training
instances. This is counter-intuitive since the sole purpose
of training a classifier is to take advantage of the available
knowledge. Nevertheless, if we have a scenario of imbalanced
classes, the evolutionary algorithm may end up evolving
an algorithm that successfully detects the rare class based
on this counter-intuitive action. Grammar flexibility is
key for discovering new and potentially useful decision tree
algorithms.

3.3 Guidelines for Fitness Evaluation

To evaluate generic decision tree induction algorithms,
we can analyze both the algorithm itself (individual being
evolved) and the decision tree it generates. For the former,
we can evaluate aspects such as time complexity and
structural complexity of the algorithm. We can penalize
algorithms whose components are costly by assigning costs
to the use of each component. For instance, a decision tree
algorithm that performs multivariate splits whose weights
are defined through a genetic algorithm, and that also
employs cost-complexity pruning is far more costly in terms
of computational effort than an algorithm that performs
univariate splits and pessimistic-error pruning. We can
choose to give greater importance to time complexity when
large data sets are being employed, or lesser importance
when data sets are smaller or when predictive performance
is crucial.

Regarding the decision tree generated by the evolved
algorithm, we can evaluate it with respect to the accuracy
it obtains, or alternatively the F-Measure (both measures
to be maximized), number of leaves and total number of
nodes (measures to be minimized), among several other
possibilities. Parsimony pressure can be controlled also
according to the needs of the end-user.
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1) <Start> ::= <Top-Down-Growing> [<PostPruning>]
<MissingValueStrategy>
2) <Top-Down-Growing> ::=
else <CreatelInternal>

3) <StoppingCriteria> ::= homogeneousTrainSet |
<MaxTreeDepthReached> | <MinInstancesReached>
<TrainAccThresholdReached>
4) <MaxTreeDepthReached> ::=

if <StoppingCriteria> then <CreateLeaf>

treeDepth (>2 | >5 | >10 | >15 |

>20)

5) <MinInstancesReached> ::= minNumInstances (=1 | =2 | =3
=4 | =5]<101| <15 | < 20) | minPercInstances ( <= 0.01

<= 0.03 | <= 0.05 | <= 0.1)

6) <TrainAccThresholdReached> ::= trainAcc (>= 0.8] >= 0.9 | >=
0.95 | >=0.99 | >= 0.999)

7) <CreateLeaf> ::= AssignFrequentClassTolLeaf |
<RareClassConditional>

8) <RareClassConditional> ::= if (NumRareClassInstances (>
11>21>31]>4]| >5) | PercRareClass ( > 0.001 | >
0.005 | > 0.01 | > 0.05)) then AssignRareClassToLeaf else
AssignFrequentClassToLeaf

9) <Createlnternal> ::= <MissingValuesSplit> <SplitCriterion>
[if <SplittingCriterionMinValue> then <CreateLeaf>

else] <MissingValuePartition> for eachSubtreeGenerated
recursiveCall-Top-Down-Growing endFor

10) <MissingValueSplit> ::= FriedmanBreiman |
Quinlani989 | LohShih
11) <SplitCriterion> ::=
| <OmniSplit>

12) <UnivariateSplitCriterion> ::= twoing | orthogonality |
Kolmogorov-Smirnov | informationGain | Gini-Index | gainRatio
| GMI | CAIR | GStatistics | ChiStatistics | NormalizedGain
MantarasDistance | ORT | MPI | TAO | Permutation | PO | CV |
DCSM

13) <MultivariateSplit> ::=
<UnivariateSplitCriterion>
14) <DefineHyperplaneWeights> ::= Hill-ClimbingSBE

| Hill-ClimbingRandomization | SimulatedAnnealing
MLPNeuralNetwork | GeneticAlgorithm

156) <OmniSplit> ::= RandomChoice | <DataBasedChoice>

16) <DataBasedChoice> ::= if <MinInstancesReached> then
<UnivariateSplit> else <MultivariateSplit>

17) <SplittingCriterionMinValue> ::= NormalizedCriterionValue
(<= 0.01 | <= 0.05 | <= 0.1 | <= 0.2)

18) <MissingValuePartition> ::= Quinlani986 | Quinlan1989-1
Quinlan1989-2 | Kononenko | Friedman | LohShih | Breiman

19) <PostPruning> ::= <ReducedError> | <PessimisticError>

| <MinimumError> | <CriticalValue> | <CostComplexity>
<ErrorBased>

20) <ReducedError> ::= <PruningSet>

21) <PruningSet> : sizeOfPruningSet( 0.1 | 0.2 | 0.3 | 0.4
0.5) trainingSet

22) <PessimisticError> ::= 0.58E | 1SE | 2SE | 3SE

23) <MinimumError> ::= valueOf-m (0.5 | 1 | 2 |1 3 | 4|5 | k|
10 | 20)

24) <CriticalValue> ::= for i=0 to <SplittingCriterionMinValue>
pruneTree(i) endFor <SelectBestTree>

25) <SelectBestTree> ::= <PruningSet> (highestAccuracy0fAll

ClarkNiblett

<UnivariateSplit> | <MultivariateSplit>

<DefineHyperplaneWeights>

ParetoOptimal)

26) <CostComplexity> ::= (<PruningSet> | <Cross-Validation>)

(0SE | 0.5SE | 1SE)

27) <Cross-Validation> ::= (2Fold | 3Fold | 4Fold | 5Fold

10Fold | 20Fold)

28) <ErrorBased> ::= CF(0.05 | 0.1 | 0.15 | 0.2 | 0.25 | 0.3
0.35 | 0.4 | 0.45 | 0.5)

29) <MissingValueStrategy> ::= Quinlan1987 | Quinlan1989
ReplaceByMeanOrMode

Figure 2: A possible grammar for generating

top-down decision tree induction algorithms.
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Figure 3: Derivation tree of a possible individual
generated by the proposed grammar.

Even though our main purpose is to evolve generic
decision tree induction algorithms, an interesting possibility
is to evolve algorithms tailored for a given application
domain, or for a particular statistical shape of data sets. We
can bias the evolutionary algorithm to generate particular
solutions by designing more specialized fitness functions.
In domains such as modeling the expressive performance
in music or in ordinal classification, accuracy or other
traditional measures may not be well-suited for evolving
specialized algorithms.

For evolving a decision tree induction algorithm tailored
for data sets with a particular statistical shape, we need a
set of data sets (a meta-training set) that share structural
similarities. ~ An interesting idea is to use geometrical
complezity measures, such as those presented in [42], for
analyzing the degree of similarity between data sets. It
is argued that the difficulty of a classification problem is
strongly related to its geometrical shape, and not so much to
sample size and dimensionality [42]. Hence, we can select a
meta-training set which is geometrically similar for evolving
algorithms suited for a particular degree of complexity.

For evolving generic algorithms, an appropriate strategy
is to select very distinct data sets, and to evaluate the
average performance of the decision trees generated in
these data sets. Since we have to select a different set
of data sets for evolving the algorithms (meta-training
set) and evaluating their relative performance (meta-testing
set), some strategies for improving computational effort are
desired, such as designing parallel /distributed environments
or randomly subsampling data sets.

4. FINAL REMARKS

To the best of our knowledge, this paper is the first work to
present an approach for automatically designing full decision
tree induction algorithms. This ambitious task is strongly
inspired by the pioneering work of Pappa and Freitas [13],
which proposes a genetic programming algorithm to evolve
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rule induction algorithms. Since Pappa and Freitas managed
to successfully evolve rule induction algorithms, we believe
the same can be achieved with decision tree induction
algorithms, regardless of it being a more complex task.

We have proposed in this paper two possible individual
representations for an evolutionary algorithm that evolves
full decision tree induction algorithms. In the first one,
each individual is encoded as a linear genome, in which
each gene is either a major design component of the
decision tree algorithm or one of its parameters. Genes
can take either integer values for indexing alternative
strategies for each major component, or real values in
the case of specific parameters. ~We have shown that
the linear genome approach is comprehensive enough to
generate classic decision tree induction algorithms such
as C4.5 [4] and CART [3]. The second approach is a
genetic programming algorithm supported by a grammar,
so individuals can be generated in the form of syntactically
correct derivation trees. Special care has to be taken
regarding genetic operators such as crossover and mutation
so individuals can keep a valid and coherent structure.

We have also proposed a few guidelines regarding the
fitness function of an evolutionary algorithm that evolves
decision tree induction algorithms. For instance, we suggest
that both the algorithm and the trees generated be evaluated
within a multi-objective fitness function. Regarding the
algorithm, time complexity can be estimated if we assign
costs to each one of the components that form the individual.
Traditional classification measures can be used to evaluate
the trees resulting from the individuals in multiple data
sets, and then combined through an arithmetic or weighted
average. We also suggest the use of specialized measures
for evolving algorithms tailored for a given domain. If we
are interested in data sets that share structural similarities,
we propose using geometrical complexity measures [42] for
deciding which data sets to be used as meta-training sets.
Wide-use generic decision tree induction algorithms can
be evolved by selecting a very heterogeneous set of data
sets to be part of the meta-training set. Since we are
interested in using several data-sets as meta-training set,
parallel/distributed solutions should be used in order to
allow the evolution of algorithms in a reasonable amount
of time. A second option would be random subsampling.

This work accounts for the beginning of a project for
automatically evolving decision tree induction algorithms
efficiently and effectively. Some of our next steps
include refining the design of the evolutionary algorithm,
implementing both strategies depicted in this paper and
evaluating their performance. @~ We plan to extensively
compare several of our automatically-designed algorithms
to human-designed ones in public data sets. In addition,
we intend to evolve algorithms tailored for specific domains
such as gene array expression, oil and gas discovery and
prediction of health indicators. We also intend to develop
evolutionary algorithms to automatically design regression
and model tree induction algorithms.
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