
Comparing the Performance of Evolutionary Algorithms
for Permutation Constraint Satisfaction

Luis de-Marcos, Antonio García, Eva García, José-Amelio Medina, Salvador Otón
Computer Science Department. University of Alcalá
Ed. Politécnico. Alcalá de Henares. Madrid. Spain

{luis.demarcos; a.garciac; eva.garcial; josea.medina; salvador.oton}@uah.es

ABSTRACT
This paper presents a systematic comparison of canonical versions
of two evolutionary algorithms, namely Particle Swarm
Optimization (PSO) and Genetic Algorithm (GA), for permutation
constraint satisfaction (permut-CSP). Permut-CSP is first
characterized and a test case is designed. Agents are then
presented, tuned and compared. They are also compared with two
classic methods (A* and hill climbing). Results show that PSO
statistically outperforms all other agents, suggesting that canonical
implementations of this technique return the best trade-off
between performance and development cost for our test case.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]:Problem Solving, Control Methods,
and Search – heuristic methods.

General Terms
Algorithms, Performance, Experimentation.

Keywords
constraint satisfaction, CSP, PSO, genetic algorithm

1. PROBLEM STATEMENT
A constraint satisfaction problem (CSP) is a problem composed of
a set of variables that must be given a value and set of constraints
that limit the values that those variables can take. Thus the aim of
a CSP-problem solver is to find an assignment for all the variables
satisfying every constraint [1]. If all the solutions of a CSP are
permutations of a tuple, then the CSP it is said to be a permut-
CSP. A permut-CSP is Loosely Constrained (LC-permut-CSP)
when the set of constraints does not reduce extremely the number
of feasible solutions. That usually happens because the density of
constraints is low resulting in problems easier to solve than harder
instances which have very few, if any, feasible solutions. LC-
permut-CSPs also have many applications in real world problems
in a wide variety of domains. LC-permut-CSPs are then important
for many practitioners and engineers.

Following Tsang [1], we will define a CSP as a triple (X,D,C)
where ܺ ൌ ሼݔ, ,ଵݔ … , ିଵሽ is finite set of variables, D is aݔ
function that maps each variable to its corresponding domain
D(X), and ܥ ⊂ ܦ	 	ൈ is a set of constraints for each pair ofܦ	
values (i, j) with 0 ݅ ൏ ݆ ൏ ݊. To solve the CSP is to assign all
variables 	ݔ in X a value from its domain D, such that all
constraints are satisfied. A constraint is satisfied when
	൫ݔ, ൯ݔ ∈ ,ݔ൫	 ,, andܥ	 ൯ it is said to be a valid assignment. Ifݔ

	൫ݔ, ൯ݔ ∉ ,ݔ൫	 , then the assignmentܥ	 ൯ violates theݔ
constraint.

If all solutions from a CSP are permutations of a given tuple then
it is said that the problem is a permutation CSP or PermutCSP. A
PermutCSP is defined by a quadruple (X,D,C,P) where (X,D,C) is
a CSP and P=<v0, v1, …, vn-1> is a tuple of |X|=n values. A
solution S of a PermutCSP must be a solution of (X,D,C) and a
complete permutation of P. LC-CSPs may be characterized as
CSPs or PermutCSPs in this way.

As for the fitness function a standard penalty function will be
used. This is a common choice when the domain of the problem
does not provide any objective function.

݂ሺܺሻ ൌ 	∑ V୧,୨൫x୧, x୨൯ஸ୧ழழ (1)

where V୧,୨: D୧ ൈ D୨ → ሼ0,1ሽ is the violation function

V୧,୨൫x୧, x୨൯ ൌ 	 ൜
0	if	൫ݔ, ൯ݔ ∈ ,ܥ	
1	otherwise	

 (2)

One hundred random permut-CSPs are generated to input the
algorithms that are subsequently tested. 24 variables are used and
20 to 40 binary constraints are randomly created. Please note that
each constraint involves two variables exactly. They are binary
constraints and thus we will be dealing with randomly generated
binary permut-CSPs. A class of randomly generated binary CSPs
is characterized by the 4-tuple ሼ݊,݉, ,ଵ ଶሽ [2]. m is the number
of variables and n is the number of values in each variable
domain. p1 is the constraint density. It is the portion of the
݊ ∙ ሺ݊ െ 1ሻ/	2 constraints in the graph. Considering that the
average test case has 35 constraints p1 will be .127. p2 is a
measure of the tightness of constraints. It determines the number
of incompatible pairs of values for each constraint.

The problem may seem under-constrained and then it would result
easy to solve for any solver. To further justify our decisions we
will turn now to studies on phase transition. Transitions have an
easy-hard-easy structure and the region in which changes occur is
called the mushy region [3]. It determines the area where most of
the hard instants exist and therefore it may be thought as the most
promising area to test problem-solvers. The mushy region is wider
when smaller values of p1 are employed and it is narrower when
the constraint density is higher [4]. That means that with a lower
value of p1 it is more likely to create hard instances when a
random problem generator is employed. Prosser [4] further reports
that, in his experiments, when p1=.1 there is a higher variability in
search effort, even well before the phase transition. We find this
to be a very desirable characteristic to test the performance of
problem solvers since harder instances will be present among a
fair amount of easy instances. As the density of the constraint
graph increases search effort for the hardest instances increases
too but variability diminishes as the mushy region narrows and

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

57

consequently hard instances are more difficult to find. A similar
behavior is observed as n increases. The mushy region narrows
(search effort also increases exponentially). We then need to find
a balance between computational cost and solvability. As we
previously explained we set n=24 to be able to run a sufficient
number of tests to have statistical significance. As for the domain
size (m) it is set as m=n because we have a permut-CSP in which
all solutions are complete permutations of a given tuple. Prosser
study also asserts that the width of the mushy region does not
change significantly as domain size varies, so this setting does not
have any significant influence on the final results.

Our objective is to focus on algorithms that offer a reasonable
performance and that can be developed and tested using also
reasonable resources. Two fairly recent evolutionary optimization
methods have shown a good balance between performance and
complexity in a wide variety of problems in different domains.
Genetic algorithms were introduced in the mid-70s [5] and they
simulate natural selection processes in order to find solutions to
problems. Particle swarm optimization (PSO) was introduced in
the mid-90s [6, 7] as a new problem solver based on the foraging
behavior observed in social insects like bees. Our aim is to
systematically test and compare these evolutionary techniques to
solve CSPs focusing, simultaneously, on the trade-off between
their efficiency, and their development (and tuning) requirements.

A canonical permut-PSO agent is designed to solve permut-CSP.
Original PSO is intended to work on continuous spaces. We use
the version that is designed to deal with permutation problems
introduced in [8]. A fully informed swarm is preferred based on
empirical evidence too [9]. A permut-GA agent with order
recombination, swap mutation and generational replacement with
elitism is also implemented in order to test its performance for
solving LC-CSPs.

2. EXPERIMENTATION
PSO and GA permut-CSP agents are subsequently tuned in order
to find the best configuration. Each configuration is inputted with
the 100 different test cases previously described and data of each
execution are collected for statistical analysis. Data transformation
is required because gathered data is not normally distributed but
rather it seems to follow a lognormal distribution. This can be
explained partially by the long tail (higher values in the number of
calls to the fitness function) which may be representative of the
most difficult instances of the random problems. They give
information about the behavior of the problem solvers in the worst
case. A logarithmic transformation (base-10) is then applied and
normality tests are also performed. Kolmogorov-Smirnov tests are
used to prove normality. For the PSO agent four configurations
are tested. ANOVA tests are then performed to determine the best
one. As for the GA agent four different parameters require tuning
and 16 different configurations are tested covering a wide range of
values. A General Linear Model is used to determine which
parameters influence the final performance, which are further
analyzed using ANOVA to determine the best possible values.

Both approaches are finally compared to test their relative
performance to solve LC-permut-CSPs. Basic versions of two
classic algorithms, random-restart hill climbing (HC) and A*, are
also implemented to compare them with evolutionary approaches.
Best configurations found for each evolutionary algorithm is used
for the comparative analysis. For the PSO the canonical version is

used. As for the GA, the optimal parameter settings determined by
previous experimentation are employed (µ=20, k=2µ/3, p=.1).

An initial overview of descriptive statistics of both algorithms
seems to shows that PSO approach outperforms the GA. This is
confirmed with an ANOVA test (F=38.28, p=.000, R2=16.2).
Both PSO and GA also outperform HC and A* algorithms.
Confidence intervals are presented in figure 1. We can then
conclude that a canonical version of the PSO is a better option to
solve random LC-permut-CSPs. PSO also has less parameters and
tuning is actually not required if we follow the recommendations
available on literature. On the other side, GA has several
parameters in which decisions need to be made. Considering that
the kind of experimental random LC-CSPs that we have employed
here bears important resemblances with many real world
optimization problems, this study suggest that such problems
should firstly be approached using a PSO algorithm rather than a
GA. This would result in better performance in terms of efficiency
as well as in terms of development effort.

Figure 1. Confidence intervals of fitness for each algorithm
(CI=95% of the mean).

3. REFERENCES
[1] Tsang, E. Foundations of Constraint Satisfaction. Academic
Press, London, 1993.
[2] Solnon, C. Ants Can Solve Constraint Satisfaction Problems.
IEEE Transactions on Evolutionary Computation, 6, 4 2002),
347-356.
[3] Hogg, T., Huberman, B. A. and Williams, C. P. Phase
transitions and the search problem. Artificial Intelligence,
811996), 1-15.
[4] Prosser, P. An empirical study of phase transitions in binary
constraint satisfaction problems. Artificial Intelligence, 811996),
81-109.
[5] Holland, J. H. Adaptation In Natural and Artificial Systems.
The University of Michigan Press, Michigan (USA), 1975.
[6] Eberhart, R. and Kennedy, J. A new optimizer using particle
swarm theory. City, 1995.
[7] Kennedy, J. and Eberhart, R. Particle swarm optimization.
City, 1995.
[8] Hu, X., Eberhart, R. C. and Shi, Y. Swarm intelligence for
permutation optimization: a case study of n-queens problem.
IEEE Press, City, 2003.
[9] Mendes, R., Kennedy, J. and Neves, J. The fully informed
particle swarm: simpler, maybe better. Evolutionary
Computation, IEEE Transactions on, 8, 3 2004), 204-210.

58

