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ABSTRACT 
This paper presents a systematic comparison of canonical versions 
of two evolutionary algorithms, namely Particle Swarm 
Optimization (PSO) and Genetic Algorithm (GA), for permutation 
constraint satisfaction (permut-CSP). Permut-CSP is first 
characterized and a test case is designed. Agents are then 
presented, tuned and compared. They are also compared with two 
classic methods (A* and hill climbing). Results show that PSO 
statistically outperforms all other agents, suggesting that canonical 
implementations of this technique return the best trade-off 
between performance and development cost for our test case. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]:Problem Solving, Control Methods, 
and Search – heuristic methods. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
constraint satisfaction, CSP, PSO, genetic algorithm 

1. PROBLEM STATEMENT 
A constraint satisfaction problem (CSP) is a problem composed of 
a set of variables that must be given a value and set of constraints 
that limit the values that those variables can take. Thus the aim of 
a CSP-problem solver is to find an assignment for all the variables 
satisfying every constraint [1]. If all the solutions of a CSP are 
permutations of a tuple, then the CSP it is said to be a permut-
CSP. A permut-CSP is Loosely Constrained (LC-permut-CSP) 
when the set of constraints does not reduce extremely the number 
of feasible solutions. That usually happens because the density of 
constraints is low resulting in problems easier to solve than harder 
instances which have very few, if any, feasible solutions. LC-
permut-CSPs also have many applications in real world problems 
in a wide variety of domains. LC-permut-CSPs are then important 
for many practitioners and engineers.  

Following Tsang [1], we will define a CSP as a triple (X,D,C) 
where ܺ ൌ ሼݔ, ,ଵݔ … ,  ିଵሽ is finite set of variables, D is aݔ
function that maps each variable to its corresponding domain 
D(X), and ܥ ⊂ ܦ	 	ൈ   is a set of constraints for each pair ofܦ	
values (i, j) with 0  ݅ ൏ ݆ ൏ ݊. To solve the CSP is to assign all 
variables 	ݔ in X a value from its domain D, such that all 
constraints are satisfied. A constraint is satisfied when 
	൫ݔ, ൯ݔ ∈ ,ݔ൫	 ,, andܥ	  ൯ it is said to be a valid assignment. Ifݔ

	൫ݔ, ൯ݔ ∉ ,ݔ൫	 , then the assignmentܥ	  ൯ violates theݔ
constraint. 

If all solutions from a CSP are permutations of a given tuple then 
it is said that the problem is a permutation CSP or PermutCSP. A 
PermutCSP is defined by a quadruple (X,D,C,P) where (X,D,C) is 
a CSP and P=<v0, v1, …, vn-1> is a tuple of |X|=n values. A 
solution S of a PermutCSP must be a solution of (X,D,C) and a 
complete permutation of P. LC-CSPs may be characterized as 
CSPs or PermutCSPs in this way.  

As for the fitness function a standard penalty function will be 
used. This is a common choice when the domain of the problem 
does not provide any objective function. 

݂ሺܺሻ ൌ 	∑ V୧,୨൫x୧, x୨൯ஸ୧ழழ      (1) 

where V୧,୨: D୧ ൈ D୨ → ሼ0,1ሽ is the violation function 

V୧,୨൫x୧, x୨൯ ൌ 	 ൜
0	if	൫ݔ, ൯ݔ ∈ ,ܥ	
1	otherwise	

     (2) 

One hundred random permut-CSPs are generated to input the 
algorithms that are subsequently tested. 24 variables are used and 
20 to 40 binary constraints are randomly created. Please note that 
each constraint involves two variables exactly. They are binary 
constraints and thus we will be dealing with randomly generated 
binary permut-CSPs. A class of randomly generated binary CSPs 
is characterized by the 4-tuple ሼ݊,݉, ,ଵ  ଶሽ [2]. m is the number
of variables and n is the number of values in each variable 
domain. p1 is the constraint density. It is the portion of the 
݊ ∙ ሺ݊ െ 1ሻ/	2 constraints in the graph. Considering that the 
average test case has 35 constraints p1 will be .127. p2 is a 
measure of the tightness of constraints. It determines the number 
of incompatible pairs of values for each constraint. 

The problem may seem under-constrained and then it would result 
easy to solve for any solver. To further justify our decisions we 
will turn now to studies on phase transition. Transitions have an 
easy-hard-easy structure and the region in which changes occur is 
called the mushy region [3]. It determines the area where most of 
the hard instants exist and therefore it may be thought as the most 
promising area to test problem-solvers. The mushy region is wider 
when smaller values of p1 are employed and it is narrower when 
the constraint density is higher [4]. That means that with a lower 
value of p1 it is more likely to create hard instances when a 
random problem generator is employed. Prosser [4] further reports 
that, in his experiments, when p1=.1 there is a higher variability in 
search effort, even well before the phase transition. We find this 
to be a very desirable characteristic to test the performance of 
problem solvers since harder instances will be present among a 
fair amount of easy instances. As the density of the constraint 
graph increases search effort for the hardest instances increases 
too but variability diminishes as the mushy region narrows and 
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consequently hard instances are more difficult to find. A similar 
behavior is observed as n increases. The mushy region narrows 
(search effort also increases exponentially). We then need to find 
a balance between computational cost and solvability. As we 
previously explained we set n=24 to be able to run a sufficient 
number of tests to have statistical significance. As for the domain 
size (m) it is set as m=n because we have a permut-CSP in which 
all solutions are complete permutations of a given tuple. Prosser 
study also asserts that the width of the mushy region does not 
change significantly as domain size varies, so this setting does not 
have any significant influence on the final results. 

Our objective is to focus on algorithms that offer a reasonable 
performance and that can be developed and tested using also 
reasonable resources. Two fairly recent evolutionary optimization 
methods have shown a good balance between performance and 
complexity in a wide variety of problems in different domains. 
Genetic algorithms were introduced in the mid-70s [5] and they 
simulate natural selection processes in order to find solutions to 
problems. Particle swarm optimization (PSO) was introduced in 
the mid-90s [6, 7] as a new problem solver based on the foraging 
behavior observed in social insects like bees. Our aim is to 
systematically test and compare these evolutionary techniques to 
solve CSPs focusing, simultaneously, on the trade-off between 
their efficiency, and their development (and tuning) requirements. 

A canonical permut-PSO agent is designed to solve permut-CSP. 
Original PSO is intended to work on continuous spaces. We use 
the version that is designed to deal with permutation problems 
introduced in [8]. A fully informed swarm is preferred based on 
empirical evidence too [9]. A permut-GA agent with order 
recombination, swap mutation and generational replacement with 
elitism is also implemented in order to test its performance for 
solving LC-CSPs. 

2. EXPERIMENTATION 
PSO and GA permut-CSP agents are subsequently tuned in order 
to find the best configuration. Each configuration is inputted with 
the 100 different test cases previously described and data of each 
execution are collected for statistical analysis. Data transformation 
is required because gathered data is not normally distributed but 
rather it seems to follow a lognormal distribution. This can be 
explained partially by the long tail (higher values in the number of 
calls to the fitness function) which may be representative of the 
most difficult instances of the random problems. They give 
information about the behavior of the problem solvers in the worst 
case. A logarithmic transformation (base-10) is then applied and 
normality tests are also performed. Kolmogorov-Smirnov tests are 
used to prove normality. For the PSO agent four configurations 
are tested. ANOVA tests are then performed to determine the best 
one. As for the GA agent four different parameters require tuning 
and 16 different configurations are tested covering a wide range of 
values. A General Linear Model is used to determine which 
parameters influence the final performance, which are further 
analyzed using ANOVA to determine the best possible values. 

Both approaches are finally compared to test their relative 
performance to solve LC-permut-CSPs. Basic versions of two 
classic algorithms, random-restart hill climbing (HC) and A*, are 
also implemented to compare them with evolutionary approaches. 
Best configurations found for each evolutionary algorithm is used 
for the comparative analysis. For the PSO the canonical version is 

used. As for the GA, the optimal parameter settings determined by 
previous experimentation are employed (µ=20, k=2µ/3, p=.1).  

An initial overview of descriptive statistics of both algorithms 
seems to shows that PSO approach outperforms the GA. This is 
confirmed with an ANOVA test (F=38.28, p=.000, R2=16.2). 
Both PSO and GA also outperform HC and A* algorithms. 
Confidence intervals are presented in figure 1. We can then 
conclude that a canonical version of the PSO is a better option to 
solve random LC-permut-CSPs. PSO also has less parameters and 
tuning is actually not required if we follow the recommendations 
available on literature. On the other side, GA has several 
parameters in which decisions need to be made. Considering that 
the kind of experimental random LC-CSPs that we have employed 
here bears important resemblances with many real world 
optimization problems, this study suggest that such problems 
should firstly be approached using a PSO algorithm rather than a 
GA. This would result in better performance in terms of efficiency 
as well as in terms of development effort. 

 

Figure 1. Confidence intervals of fitness for each algorithm 
(CI=95% of the mean). 
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