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ABSTRACT

In a standard evolutionary algorithm such as genetic algo-
rithms (GAs), a selection mechanism is used to decide which
individuals are to be chosen for subsequent mutation. Ex-
amples of selection mechanisms are fitness-proportional se-
lection, in which individuals are chosen with a probability in
proportion to their fitness value, and rank selection, in which
individuals are selected with a probability in proportion to
their ordinal ranking by fitness. These two human-designed
selection heuristics implicitly assume that fitter individuals
produce fitter offspring. Whilst one might invest human
ingenuity in the construction of alternative selection heuris-
tics, the approach adopted in this paper is to represent a
generic family of selection heuristics which are applied via
an algorithmic framework. We then generate instances of
selection heuristics and test their performance in an evolu-
tionary algorithm (which in this paper tackles a variety of
bitstring optimization problems). The representation we use
for the program space is a register machine (a set of real-
valued registers on which a program is executed). Fitness-
proportional and rank selection can be expressed as one-line
programs, and more sophisticated selection heuristics may
also be expressed. The result is a system which produces
selection heuristics that outperform either of the original se-
lection heuristics.

Categories and Subject Descriptors

1.2.2 [Artificial Intelligence: Automatic Programming):

Miscellaneous

General Terms

Algorithmic Tuning, Automatic Design, Selection Heuristics

1. INTRODUCTION

1.1 Heuristics and metaheuristics
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Problems which cannot be solved exactly within practical
time and memory constraints require the use of heuristics
— elements of the solution strategy that are intended to
promote the discovery of good solutions without requiring
the exploration of the entire problem space. Metaheuristics
may be considered to be abstract control strategies that have
been found to achieve good results across different problem
domains. Metaheuristics include simulated annealing, hill-
climbing, GAs and tabu-search
[4, 6, 8].

Human-designed metaheuristics represent only a small frac-
tion of the space of possible metaheuristics. In addition, it is
known that no single metaheuristic can perform well across
all possible problem instances [17]. Just as a species is fit
for a particular niche in an environment, so a problem class
(i.e. a probability distribution over a set of problems, see
sections 7.1, 1.4) defines a niche which is appropriate for a
particular metaheuristic. There is therefore a compelling re-
quirement for the automatic design of metaheuristics. This
paper addresses some of the issues involved in automatically
designing one component of a metaheuristic for a particular
problem class, namely the selection procedure.

There is a distinction between search algorithms and meta-
heuristics. A search algorithm (e.g. binary search) which is
used under certain circumstances (e.g. finding an item in
a sorted list) or searching a list for the first occurrence of
a required item. Search algorithms are typically, not only
tractable, but provably very efficient. In contrast, a meta-
heuristic performs the function of sampling a space, but in
a heuristic fashion as the space is intractably large (e.g. the
space of routes is O(n!) in a TSP problem) and therefore
only a tiny subset of the space can be sampled in the hope
of discovering a good enough solution within a time limit. In
other words, metaheuristics belong to the family of generate-
and-test algorithms. In this paper we will be generating and
testing generate-and-test algorithms.

1.2 Generic Algorithms

Machine learning is a branch of Artificial Intelligence con-
cerned with the induction of general rules from training data.
Evolutionary Computation can be considered as a branch of
machine learning which generates solutions to a target prob-
lem class. For example, if we are tackling a Traveling Sales-
man Problem (TSP) problem with GAs, the solution may
be represented as a permutation of the cities in the order in
which they are to be visited. If we encounter a new prob-



lem instance, we have to execute the GA again to generate
another solution.

A more generic approach would be to produce an algo-
rithm which can solve many instances of TSP, rather than
producing a single solution each time. This distinction is
well-made in [12] and captured by the phrase: “Give a man
a fish and he will eat for a day, teach a man to fish and he
will eat for a lifetime.” A discussion of some of the differ-
ences between GA and GP can be found in[19].

One popular approach to generating algorithms in this
fashion is GP [9, 1]. GP is a method of producing func-
tions (expressed as programs) which map inputs to outputs.
An immediate issue of using GP in its conventional form as
Koza trees [9] is how to utilize the output of such a syntax
tree within a TSP setting. While is it very natural to use a
permutation of cities within a GA representation, it is not
obvious how to apply a GP tree to an instance of the TSP
problem in order to produce solutions which are permuta-
tions of the cities.

We use the term Generic Algorithms to denote the use
of GP within a algorithmic framework which defines the
context for the mapping from the problem domain to\from
the GP components. Together these two parts constitute a
Generic Algorithm which can be used for multiple problem
instances. This is summarized in the following equation.

Generic Algorithms = Genetic Programming +
Application Framework.

Genetic Programming in this equation, could be replaced
by any other metaheuristic (e.g. random search which we do
in this paper) which is used to search a space of programs
(e.g. register machines) so this equation maybe rewritten
as “Generic Algorithms = (Metaheuristic + Space of Pro-
grams) + Application Framework”. We prefer Generic Al-
gorithms = Genetic Programming + Application as GP is
in particular the metaheuristic used for searching a space of
programs.

Our approach effectively automatically designs a generic
algorithm for a problem class. If the probability distribu-
tion of the problem class changes, a human designer must
revisit the heuristic design process. The method proposed
in this paper automates this process: a new heuristic can be
automatically produced for a new problem class.

Similar to the induction process in machine learning, the
development of generic algorithms has a training phase fol-
lowed by an independent testing phase (see section 4.1).
During the training phase, the system is exposed to differ-
ent scenarios and allowed to alter its heuristic. The testing
phase then employs the most general heuristic obtained from
the learning phase.

1.3 Automatic design of selection heuristics

One component of an Evolutionary Algorithm is the selec-
tion heuristic. Two ubiquitous selection policies are fitness-
proportional selection and rank selection. In this paper, we
represent selection heuristics with Register Machines (RMs)
equipped a small instruction set. There are two inputs (the
fitness of a bitstring and the rank of a bitstring in the sorted
population). The output value is then used for selection pur-
poses in place of rank or fitness. Random search is used to
sample the space of RMs (i.e. the space of possible selec-
tion heuristics). The best resulting RM is then used as a
selection mechanism in a GA.
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We could have used other ways to represent selection heuris-
tics such as syntax trees [9], and we made this choice arbi-
trarily. In order to search the space of RMs, we used random
search as this was sufficient in this case. Again other meth-
ods could have been used.

1.4 Problem classes and Problem Instances

Central to our approach is the concept of a problem class
for which the heuristic is designed. For this paper, we fix
the domain to be that of functions which map bitstrings of a
fixed length to a floating point value. A problem class is then
a probability distribution over the set of all such functions
and a problem instance is simply one such function.

It is important to note that we are not developing a gen-
eral selection heuristic which will perform well for all func-
tions (which is prohibited by the NFL theorems [17]). The
NFL theorems prohibit any gain over function spaces [17],
but NFL theorems are not valid over program spaces [22,
19]. We are automatically designing selection heuristics for
a specific problem class. In other words, if we were pre-
sented with instances from a different problem class (e.g.
deceptive functions as opposed to mimicry problems), we
make no guarantees about performance.

1.5 Contribution of this paper

The contribution of this paper is a simple framework for
the generation of novel selection heuristics for use in Evo-
lutionary Algorithms. The selection heuristics expressible
by this framework are not just a linear weighted sum of the
component heuristics. Both rank and fitness-proportional
selection are easily expressed in this framework. We also
demonstrate that this framework produces selection heuris-
tics which outperform either of the component heuristics on
the problem class on which we train. Since we are producing
new selection heuristics, we introduce the term “algorithmic
tuning” as opposed to parameter tuning to differentiate this
work from other literature (see section 3.3).

The research question being addressed in this paper is
“can we produce a system which can automatically generate
effective selection heuristics”? The conclusion of this paper
is that we can reply in the affirmative. The tangible deliv-
erable of this work is a method for producing appropriate
selection heuristics for any problem domain presented to the
framework. The purpose of this paper is thus not simply to
propose another selection operator: the literature is already
flooded with operators without a cause, i.e. constructed via
ad hoc methods. The approach of tuning an algorithm to a
problem class solves a number of issues:

1. It will generate new selection heuristics which are sta-
tistically guaranteed to perform no worse than either
of the human-designed heuristics on which the system
is built.

2. If a new heuristic is developed (either by human or
machine), it can be incorporated seamlessly into the
current framework. This avoids having to make an a
priori choice of selection heuristic, as the system will
generate one at least as good as the supplied set of
heuristics.

3. The resulting selection heuristic is tailored to the prob-
lem class it is trained on, and thus will perform better
on the target problem class than an “all purpose” se-



lection heuristic such as rank or fitness proportional
selection.

This paper only provides “proof of concept” on a simple
problem class. Future work will expand this with more dif-
ficult problem classes and more sophisticated search mech-
anisms (e.g. GP) to discover novel heuristics.

1.6 Outline of remainder of paper

As motivation is so important, we devote the whole of sec-
tion 2 to it. In section 3 we review the current literature.
The proposed methodology is described in section 4, and ex-
perimental studies and results are presented in section 5. In
section 6 we discuss the philosophy of the proposed method,
and finally the paper draws to a close with a conclusions
section 7.

2. MOTIVATION

2.1 Automatically designing metaheuristics

The use of GP to produce human-competitive heuristics
has already been demonstrated in a number of application
areas including SAT, TSP, on-line bin-packing and data-
mining [12, 3, 2, 13]. It therefore worth considering the au-
tomated design of metaheuristics themselves, and this paper
is a step in that direction.

It is our claim that results given in this paper support the
automation of the design process and show that there is little
point in hand-coding new selection heuristics. This is partic-
ularly true given the lack of theoretical results to guide us.
The design process proposed in this paper is a generate-and-
test approach (as is the metaheuristic approach itself), and
so it makes sense to hand-over as much of what can be auto-
mated as possible to the machine. The framework approach
we propose is a step in the direction of full automation.

2.2 Reducing development costs

Heuristics save time and money. What is often ignored
is the cost of developing these heuristics in the first place
(rather than the savings they produce after development).

In most endeavors, there is generally a tradeoff between
cost and quality, with lower cost implying lower quality, how-
ever this is not the case here. Mass-producing heuristics
with the framework we propose will result in better-quality
and lower-cost heuristics as compared to human-designed
heuristics.

High-quality implies that the heuristics are tailored to the
specific problem class, as they cannot be universally high-
quality for all problem instances [17, 20]. Low-cost implies
the heuristics are designed by computer and not by costly
error-prone humans.

3. LITERATURE REVIEW

We begin by looking at some of the problems of evolving
algorithms in general. We then look at some success-stories
similar to the approach proposed in this paper. Finally we
look at parameter tuning, which is also expressible within
the currently proposed framework.

3.1 Evolving Algorithms

Previous work has been concerned with evolution of al-
gorithms, which include loops, conditionals and access to
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memory i.e. the Turing-computable functions [18]. Algo-
rithms have been automatically generated which perform
functions of multiplication or listing the Fibonacci sequence
[7]. However, the automatic generation of algorithms is not
without huge practical difficulties, not least of which is dif-
ficulty associated with non-terminating programs and the
highly rugged landscape associated with programs [16, 21].
The vast majority of Turing-complete programs do not halt,
and while this problem is formally semi-decidable most pa-
pers take the simplistic approach of imposing an upper limit
on the number of execution steps or execution time. We may
therefore conclude that evolving algorithms capable of uni-
versal computation is a difficult goal, and there is the need
for a syntactic framework to constrain what may potentially
evolve.

3.2 Genetic Programming Hyperheuristics

Work has been done using GP to evolve programs that
operate in a framework. Applications include on-line and off-
line bin-packing, SAT, TSP and data-mining [12, 3|. In each
of these cases, GP is used to evolve functions that are applied
to the problem domain within the context of a framework.

The basic approach, common to all these works, consists
of a number of stages (see [3] for further details);

1. Examine currently-existing heuristics for any common
components. Define a framework which can express
currently existing heuristics and that provides a con-
text for newly-generated heuristics to operate in.

2. Define a GP system in terms of fitness-function, ter-
minal and function sets, and run the GP system.

The contrast between evolving algorithms capable of uni-
versal computation, and evolving functions in a framework
means that we restrict the possible interpretations of the
evolved programs. That is, evolving algorithms without a
framework can produce any computable function, while evolv-
ing algorithms with a framework is restricted to only func-
tions with a framework-mandated signature.

3.3 Parameter tuning and self-adaptation

A trivial way of hybridizing two methods is to parameter-
ize them over a probability distribution. This is a limited
approach as it only allows a linear combination of the com-
ponent parts. The framework we are proposing can certainly
express this approach of a linear weighted sum. One exam-
ple of how we can combine two operators with a parameter
a (where 0.0 < a < 1.0) is

if rand < a then
operatorl
else
operator?2

where rand is a random number in the range [0.0,1.0]. If
we set a = 0, we get operatorl, and if we set a = 1, we get
operator2.

Instead of having search operators act directly on the rep-
resentation, the methodology of self-adaptation employs op-
erators that act on a numerical parameter which in turn
affects how operators affect the representation [10]. For ex-
ample, a common parameter of many evolutionary systems
is the mutation rate — if it is set too high, it will perform a
very random search, conversely set too low it will not make



sufficient progress through the search space. This sort of
parameter is critical to the performance of the algorithm,
and is therefore an ideal candidate to undergo self-adaption,
with the mutation rate being governed by the evolutionary
process itself. Instead of deciding upon a fixed initial value
for a parameter, the responsibility of altering the parameter
is made online by the system itself (using feedback from the
evolutionary system). Thus parameter tuning, self-adaption
and hybridization are connected. It is important to note
that self-adaption occurs online during a single evolutionary
run. This is in contrast to our approach where the selection
heuristic is fixed for a single run, and only allowed to after
from one run to the next run. It should be noted also that
self-adaptation is not without its associated problems [11].

4. PROPOSED APPROACH

We begin by describing the stages of development of a
generic algorithm. We describe the signature for our selec-
tion heuristics, and how a RM can be instantiated to do
this. Finally we explain how current selection heuristics can
be expressed as RM programs.

4.1 Stages of development

There are 3 stages in the development of the selection
heuristics (as with all generic algorithms, see page 21 of [12].

1. the training or learning phase.
2. the testing or validation phase.
3. the real-world application or execution phase.

In the training phase, RMs are given the task of learn-
ing a selection heuristic, on sets of instances drawn from a
given problem class. In the validation phase, we measure
the performance of a RM as a selection heuristic on a set of
independent problem instances drawn from the same prob-
lem class. At this stage, if a heuristic fails (i.e. is not deemed
good enough), we can return to the first stage. In the real-
world application phase, the selection heuristic are past the
development stage and are therefore fixed.

When we compare our generic algorithms expressed as
RMs with human-designed heuristics, we ignore any cost
associated with the training and testing phases, i.e. we only
consider the performance of heuristics after they have been
designed for an application. In these experiments, we are
therefore testing the performance of the heuristics, not the
system that produced the heuristics. It is our contention
that this is a fair approach because the cost of human-
designed heuristics (however that might be determined) is
not traditionally included in such comparisons.

4.2 Selection heuristic signature

Our framework defines the signature of the selection func-
tion to be: Selection : (2N, R)Y — (2M)F where P is
the population-size and N is the length of the bitstrings.
Fitness-proportional and rank selection are clearly possible
implementations of this signature.

The selection policy that we employ within our framework
to implement this signature makes use of a register machine
to generate a function

sel : (fitness(x), rank(x)) — r € RT
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where fitness(z) and rank(z) are functions that respec-
tively determine the fitness and rank of an individual x.
The output value of this generated function is determined
for each individual in the population and individuals are
then selected with a probability in proportion to this out-
put value.

4.3 A selection framework

Here we consider two selection heuristics, and how they fit
into the same framework (i.e. they are two specific instances
of our generalization). In general, the selection mechanism
in an Evolutionary Algorithm is a two stage process. Firstly,
a value is assigned to each individual (its index in the case
of rank selection, and its “normalized” fitness in the case
of fitness-proportional selection). Secondly, individuals are
selected in proportion to the value assigned to them (see
section 5.2). For the purposes of this paper, we are con-
cerned with how to assign values to each individual in the
population and keep the second stage fixed. In this paper
we are assuming we are maximizing a function. If we were
minimizing a function then it would have to be transformed
into a maximization problem.

In the case of fitness proportional selection, individuals
are selected in proportion to their fitness.

pi = fitnessi/(zgzlp fitness)

where fitness is normalized in the range [0,1] and p; is the
probability that the ith individual will be selected for the
next generation and P is the population size. In the case of
rank selection, individuals are selected in proportion to their
rank (or index) in the sorted population (sorted by fitness).

pi = i/(3)21 rank(j))

where p; is the probability that the ith individual will be
selected for the next generation and P is the population
size. Normalized fitness means that fitness are in the range
0.0 to 1.0 (and so can be interpreted as probabilities).

In the second stage of selection, individuals are condition-
ally promoted to the next generation on the basis of the
value assigned to each one.

for all individuals p in population
select p in proportion to value( p );

where value is one of rank or fitness and since we wish to
interpret the output value as a probability for subsequent
use in proportional selection, we normalize all such val-
ues accordingly. Within a proportional-framework, we may
therefore use either the individual’s rank or fitness and have
two different selection heuristics in the same proportional-
framework.

4.4 Searching for Register Machines

In order to represent selection heuristics, we elected to
use a RM (we might have alternatively decided to use Koza-
style GP syntax trees). A RM is a model of computation
consisting of a program (a list of instructions see section 5.2)
and a list of registers which act as memory and are updated
according to the program’s instructions [7].

A program counter controls which instruction in the pro-
gram is to be executed next. For the experiments in this pa-
per, we employed only arithmetic and copy operators, and
instructions are therefore executed in a sequential fashion.



The program is terminated when the final instruction is ex-
ecuted: programs of n instructions therefore terminate after
n steps.

To search the space of RMs we use random search. As this
application is simple, we do not need to over complicate the
matter using more sophisticated methods or representations.

4.5 Expressing current selection heuristics

It is desirable that our system can at least express the two
human designed heuristics. In our framework, this is trivial,
since as these heuristics are fed directly into the system as
inputs on the registers. Each RM is initialized with the value
of the fitness of a bitstring on Ry and the rank of the indi-
vidual in the population on R;. Rank selection is expressed
by the RM program as copy R1 RO and fitness-proportional
selection is expressed by the RM program as NOP since the
fitness is already sitting on the output register. The deci-
sion regarding the registers to which fitness and rank are
assigned is effectively arbitrary. If fitness was placed on a
register other than Ry, it would only be a case of copying
the value to the output register Ro. Both human-designed
heuristics can therefore easily be expressed within this RM
framework. The consequences of this are:

1. Selection heuristics equivalent to rank and fitness pro-
portional are readily expressible in the framework and
can almost trivially be discovered by searching the
space of RM programs.

2. Programs that perform as well as the two human-
designed heuristics are simple and therefore likely to be
generate early in the search process, providing a base-
line against which better-performing programs can be
discovered.

S. EXPERIMENTS

We compare a set of automatically-generated RM selec-
tion heuristics against the two human designed heuristics;
rank selection and fitness-proportional selection. These com-
parisons on conducted on a set of test cases, drawn indepen-
dently from the training cases but with the same underlying
probability distribution.

5.1 The Mimicry Problem Class

An example of a discrete optimization is the mimicry prob-
lem [5], a generalization of the well-known onemaz problem
[15]. The goal is to generate a bitstring identical to a fixed
target bitstring, the objective value e(x) being given by max-
imizing the ratio of the number of correct bits in the source
to the total number of bits (i.e. the hamming distance di-
vided by the length of the bitstring). Thus 0.0 < e(z) < 1.0.

Our problem class for the Mimicry problem is parameter-
ized by a Gaussian distribution. An instance of the problem
class is obtained by:

1. Filtering values from N(0,1) such that they were re-
stricted to the closed interval [—1,1].

2. Linearly interpolating the value into the range
[07 2num—bzts _ 1]

3. The target bitstring is then given by the Gray coding
[14] of the linearly interpolated value. The rationale
for using Gray coding is that it makes it easier to gen-
eralize across problem instances than if a direct binary
encoding of the linearly-interpolated value were used.
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5.2 Parameter settings

| Parameter | Value |
num-bits 64
metaheuristic-num-runs 50
metaheuristic-population-size 30
metaheuristic-num-generations 50
metaheuristic-mutation-probability 0.1

Table 1: Parameter settings for the metaheuristic

The parameters used for the bitstring evolution are given
in Table 1, The length of bitstrings is num-bits. The pop-
ulation size of bitstrings is metaheuristic-population-size.
Fach bit in the bitstring is flipped with a probability of
metaheuristic-mutation-probability. The number of genera-
tions the evolutionary metaheuristic is run for is metaheuristic-
num-generations. The number of independent instances drawn
from the problem class for which the evolutionary algorithm
is run is metaheuristic-num-runs.

Parameter Value
random-search-iterations 100
RM program length 2
register size 3
output register Ro
contents of Ro fitness
contents of R rank
contents of Ry 0 (working register)

Table 2: Parameter settings for the RM framework

The parameters used for the RM generation are given in
Table 2. Fitness and rank are placed on Ro and R; respec-
tively and Ry is left free for the RMs to use as a temporary
working register. The output is taken from Ry. For all ex-
periments, the nonterminal function set (i.e. instruction set)
for the RM is given in section 3. The search space is thus
relatively small, as we only have to find two instructions and
appropriate arguments for each instruction.

Instruction Action Arguments
Inc R+ R;+1 1
Dec Ri+ R;,—1 1
Sub Ry +— R; — Rj 3
Mul Ri <+ Rix R; 3
Div Ry < R;i/R; if R; #0,0 3
Set R, z€eR 2
Copy R; R]' 2
Clear R, « 0 1
Swap R; & R; 2

Table 3: Instruction names, with their action and
number of arguments. Note, all instructions take
register indexes as arguments (i,7,k € {0,1,2}) ex-
cept set which also take a value [-1,1] € R



5.3 Metaheuristic generational model

We use the generational model in which a new population
is generated from an old population, individuals are selected
from the current population, undergo mutation and fitness
evaluation, and are inserted into the next population. This
is repeated until the next population is full, and this entire
process is repeated each generation. This is in contrast to
the steady-state approach where there is only a single pop-
ulation and individuals are placed directly into the current
population.

5.4 Results

| | Fit Prop | Rank | RM-select |
mean 0.8315281 0.9078094 0.9160875
std dev | 0.003094834 | 0.002517495 | 0.006958214
min 0.824375 0.9028125 0.9025
max 0.8384375 0.9146875 0.9290625

Table 4: Results

After running the system, we obtained the statistics in ta-
ble 4. Performing t-test comparisons of fitness-proportional
selection and rank selection against RM-selection resulted
in a p-value of better than 107*® in both cases. In both
of these cases the RM outperforms the standard selection
operators.

6. DISCUSSION

6.1 Why do we need a framework at all?

One may ask “why do we need a framework?” when we
might alternatively evolve a selection algorithm using other-
wise unconstrained GP. Our response is that evolving algo-
rithms in such an unconstrained fashion is likely to fail [21].
For example, some RMs may not assign values to some of
the individuals in the population, whereas a framework ap-
proach forces RMs to iterate over the population, assigning a
value to each individual. Secondly if we allow arbitrary algo-
rithms to evolve, we may be producing RMs which perform
unwanted functions such as sorting, listing the Fibonacci se-
quence, checking to see if the input is prime, or (more likely)
performing some arbitrary function of their input. Having a
framework constrains the GP program to performs a certain
task. The GP program is then responsible for improving
the quality of that task, within the context of the supplied
framework.

6.2 Random search of register machines

We claim that the fact that we need use no more than
random search to successfully explore our constrained space
of selection heuristics is illustrative of the power of this
method. It is part of our intended program of future work to
use GP to search the space of such heuristics at the topmost
level, but our results show that random search suffices for
proof of concept.

6.3 Guaranteeing human competitiveness

In this paper we have produced a method of generating
selection heuristics that perform better on the target prob-
lem class than either of the two human-designed heuristics
that were incorporated at the design stage.
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In one sense, the positive result regarding performance
in this paper is a foregone conclusion. It would have been
very unlikely that rank or fitness-proportional selection were
the best selection heuristics for the given problem class. We
therefore had every reason to be optimistic about the poten-
tial success of the system in advance of its implementation.

One might compare this method with a self-adaptive ap-
proach, but it is worth noting that if the initial framework
is capable of expressing a self-adaptive approach within the
space of possible designs, then there is every reason to be
confident that our approach will find it and outperform it.

We should emphasize that we are a long way from our ulti-
mate goal of fully-automated design and we consider that the
current method can best be described as human-assisted de-
sign, since it is the human who ultimately defined the frame-
work and the associated search-space of possible heuristic
designs.

6.4 Scaling of fitness values

Scaling the fitness of an individual by a constant factor
would not change the relative fitness of two individuals and
therefore the performance of fitness-proportional selection
would not change. In other words, fitness-proportional se-
lection is invariant under proportional scaling.

If we were to use a strictly-increasing monotonic scaling
of fitness value, the rank of an individual in the population
would be preserved e.g. if f(x) if we monotonically scaled
m(f(z)) (by the definition of a strictly-increasing monotonic
function for such a function m) and therefore rank selection
would perform the same (rank selection is invariant under
monotonic scaling).

6.5 Other information

In this paper we have only used two terminals (rank and
fitness). In our “learning to walk before we can run” ap-
proach to research, we can now ask the question “what other
information may be of use to our automatic design method
which can be used as terminals in the GP system?” An obvi-
ous addition would be the generation number or the number
of individuals process, as the selection heuristic could then
effectively be time varying, in an analogous way to simulated
annealing where the acceptance probability decays exponen-
tially. Another useful terminal would be a constant and per-
haps a random number generator (possibly time varying).

6.6 Freeing ourselves of human assumptions

Rank and fitness-proportional selection are both selection
heuristics which have in common that fitter individuals are
more likely it is to be selected. On the face of it, this seems
reasonable, as expresses by the evolutionary sound-bite “sur-
vival of the fittest”, but this is not always the best policy.
By automatically generating selection heuristics, we can free
ourselves of this central, sometimes limiting, assumption
and any other implicit assumptions we might subconsciously
make when hand-crafting heuristic approaches.



7. CONCLUSIONS

7.1 Link between problem classes and auto-
matic design of metaheuristics

Often, when a new heuristic is proposed in the literature,
it is tested on a set of benchmark problem instances. It is
usually reported that it performs better on some problem in-
stances and worse on others. This observation supports the
case for the automatic design of heuristics to target a prob-
lem class. In this paper we have presented such a method
where a heuristic is trained for a particular problem class,
and is therefore automatically trained for exposure to sub-
sequent instances of that problem class.

7.2 Framework vs. algorithm level design

The work contained in this paper represents a paradigm
shift from thinking of heuristics at the algorithmic level (i.e.
the implementation level of a single heuristic), to the frame-
work level (i.e. a set of heuristics). In other words, re-
searchers should not be occupied with the design of heuris-
tics, but should work at the level of a framework (i.e. a space
of possible algorithms) and employ a generate-and-test ap-
proach to road-test candidate algorithms. Put differently,
the generation of heuristics is cheap (when done automati-
cally), and the automatic generation of heuristics can only
be achieved by having a framework in place in which differ-
ent heuristics can be expressed.

Put differently, instead of researchers proposing heuristics,
they can propose a whole family of heuristics A generate-
and-test method can process the family deciding which one
is best for the problem class at hand.

We are not saying this is “the” framework for selection. As
we said in section 6, other information (i.e. terminals and
functions) can be added easily into this framework, or indeed
other representation of functions (e.g. Koza style GP trees,
rather than RMs). We encourage research at the framework
level, rather than at the algorithm level, the advantage being
that a computer can search the space of algorithms defined
by the framework.

The design of a good framework is still something of an
art, rather than a science, just as the design of a heuristic
used to be an art before the introduction of this method.
A framework should be expressive enough to describe a few
currently existing heuristics. (i.e. have the potential of re-
discovering these heuristics). It should also be able to simply
express (i.e. in a few lines of code) a number of currently
existing heuristics (i.e. they have the potential of being
found easily by GP, or even generated at random in the
initial population). The framework should not be too re-
strictive that the set of heuristics expressible is too limited
(e.g. a weighted sum of two currently existing heuristics).
Nor should the framework should be too expressive (e.g. ex-
pressing functions which do not perform the sort of function
required).

7.3 Raising the level of generality

It is known that metaheuristics must be tuned to a specific
problem class [20]: when presented with a different problem
class, there are no guarantees regarding the performance of
a metaheuristic on this class (it could perform better, worse
or be statistically indistinguishable). What our method af-
fords is a robust approach for automatically configuring a
metaheuristic component (in the case of this paper, a new
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selection heuristic) for instances drawn from an arbitrary
problem class.
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