Addition Chain Length Minimization
with Evolutionary Programming

Saul Dominguez-Isidro, Efrén Mezura-Montes and Luis G. Osorio-Hernandez
Laboratorio Nacional de Informatica Avanzada (LANIA) A.C.
Rébsamen 80, Centro, Xalapa, Veracruz, 91000, Mexico
sdominguezi@lania.edu.mx, emezura@lania.mx, luisgosher@ gmail.com

ABSTRACT

This paper presents the use of an evolutionary metaheuris-
tic algorithm called evolutionary programming to minimize
the length of addition chains, which is an NP-hard problem.
Addition chains are used in modular exponentiation for data
encryption and decryption public-key cryptosystems, such
as RSA, DSA and others. The algorithm starts with a po-
pulation of feasible addition chains. After that, the combi-
nation of a mutation operator, which allows each individual
to generate a feasible offspring, and a replacement process
based on stochastic encounters provides a simple approach
which is tested on exponents with different features. The
proposed algorithm is able to find competitive results with
respect to other nature-inspired metaheuristic approaches
but with a lower number of evaluations per run.

Categories and Subject Descriptors

1.2.8 [Computing Methodologies]: Problem Solving, Con-
trol Methods, and Search— Heuristic methods; E.3 [Datal:
Data Encryption

General Terms
Algorithms

Keywords

Addition Chains, Evolutionary Programming, Cryptogra-
phy

1. INTRODUCTION

Field exponentiation consists in finding a positive integer
b satisfying equation: b = a® mod p where a is a integer
within the range [0, 1, 2, ..., p - 1], e is an arbitrary positive
number, and p is a prime number. Field exponentiation has
an inherent problem of the general exponentiation, which
consists on multiplying the base a by itself as many times
as specified by the exponent e. One way to reduce the com-
putational cost involved is based on reducing the number of
multiplications by using addition chains.

An addition chain U for a given exponent e, and with
length denoted as Length(U), is a sequence of integers with
the following properties: the first number is one; every sub-

Copyright is held by the author/owner(s).
GECCO’11, July 12-16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

59

sequent number is the sum of two early numbers not nece-
ssarily different), and e occurs at the end of chain.

This work introduces an approach based on evolutionary
programming (EP) to find minimal length addition chains
for different types of exponents.

2. EVOLUTIONARY PROGRAMMING

EP simulates evolution at species level. Therefore, no
crossover operator is employed. In this proposed approach,
an individual is represented at genotype level, i.e., an in-
dividual is a feasible addition chain. The fitness value of
each individual is the length of the addition chain. There-
fore, shorter strings are preferred. To generate the initial
population each individual U,, = w1, us,...,e starts with
ur = 1, ug = 2, ug = rnd(3,4). After that, function Com-
plete (see Alg.1) is invoked to complete the addition chain.

Algorithm 1 Complete(U, k, €) receives an incomplete ad-
dition chain U. k is the next position to be filled and e is the
exponent. The function returns a complete and feasible addition
chain U. Flip(P) returns 1 with probability P.

l: Seti=k—1

2: while u; # e do

3: if Flip(f) then

4: u;+1 = 2u; {/*applying the double stepping*/}

5: else

6: if Flip(g) then

7 uit1 = ui+u;—1 {/*adding the two previous elements*/}

8: else

9: uit1 = u; + rnd(uo,ui—1) {/*adding the last element
plus a randomly chosen element*/}

10: end if

11: end if

12: while u;41 > e do

13: aur =1 —1

14: Uit1 = Ui + Ui—quz

15: aur = aux — 1

16: end while

17: end while
18: return U

The while loop observed in row 12 within Algorithm 1 is
added so as to keep the addition chain U from surpassing
the value of exponent e. Unlike other options proposed in
[1, 2, 3], where random values are considered, in this work
the search for the feasible term starts in a deterministic way
from the previous position u;—1 stored in a variable called
aux.

Mutation is used as the only variation operator. Each
individual k in the current population generates ¢ mutants,
see Fig.1, and the best of them is chosen as k’s offspring. To
generate mutants Alg.1, is invoked ¢ times for each indivi-
dual k.

Mutation Point

1 2 3 6 18 [21 |27 |30 | 33

1|1|2‘3‘6‘11|24‘30‘33‘ L=7

2[1 [2 [5 e [8 1622]30[33] L=8

3|1 |z ‘3 ‘s ‘7 ‘14‘21‘23|30|32|33| L=10

Mutants

4|1|Z‘3‘6‘9|15‘24‘33‘ L=7

Figure 1: Mutation operator in the proposed EP
algorithm

The replacement mechanism, as in the original EP, is ca-
rried out by stochastic encounters. Each individual, from the
set of current solutions plus their corresponding offspring,
competes, based on fitness, against ¢ randomly chosen in-
dividuals from that set in head-to-head encounters. After
that, the individuals are sorted based on their number of
wins and the first half remains as the population for the
next generation, while the rest is eliminated from the opti-
mization process.

3. EXPERIMENTS AND RESULTS

Four experiments were designed to test the performance of
the EP algorithm. “Small”; “hard” and “diverse” exponents
(up to 64 bits) were used with the goal to test EP in different
search spaces. Quality (the best solution reached so far) and
consistency (better mean values) obtained in a set of inde-
pendent runs were considered as performance criteria. The
following parameter values were used by the EP algorithm:
population size n = 100, maximum number of generations
MAXGEN = 230, number of mutants ¢ = 4, number of in-
dividuals for the encounters ¢ = 10, double stepping rate f
= 0.7, previous positions rate g = 0.2.

Based on the aforementioned parameter values, the EP
algorithm computed 92,000 evaluations per execution (n X
MAXGEN x t). 30 independent runs per each experiment
were carried out.

The first experiment consisted in calculating the total a-
ccumulated addition chains for a fixed set of “small” expo-
nents. An accumulated addition chain (T) for a maximum
value Z, represents the sum of all lengths of the addition
chains obtained for all the exponents [1, 2, ..., Z], as stated
in Equation 1.

z
T(Z) = Z EP_Optimal_Addition_Chain_Found(i) (1)

i=1

The comparison of those shortest addition chains (best re-
sults) found, besides the results of 95%-confidence unpaired
two sample t-tests between each one of the three compared
algorithm and EP are presented in Table 1, where it can be
noted that EP provided a highly competitive performance.
Another advantage of EP with respect to the GA [3] and
PSO [2] is that the proposed algorithm required 92,000 e-
valuations in each single run, while the GA and the PSO
computed 240, 000 and 300, 000, respectively. The AIS al-
gorithm did not report the evaluations per run performed.

The second experiment included a set of exponents known
as “hard” to optimize because deterministic methods fail to
obtain their minimal length addition chain [1, 2, 3]. In the
third experiment, another set of 28 “diverse” exponents were
solved by the EP algorithm and the results were compared

60

Table 1: Results for Accumulated addition chains
by AIS [1], GA [3], PSO [2] and EP. “(4)” means a
significant difference with respect to EP

cc Opt. ATS GA PSO EP
[1,512] | 4924 | 4924(F) 4924 4924
1,1000] | 10808 | 10813(+) | 10809(+) — 10808
1,1024] | 11115 | 11120(+) — 11120(+) | 11115
1,2000] | 24063 | 24108(+) | 24076(+) 24076
1,2048] | 24731 | 24778(+) | 24748(+) — 20745
1,4006] | 54425 | 54617(+) | 54487(F) — 54497

with those obtained by the modified AIS [1] and PSO [2].
The fourth experiment is similar to the first one. However,
the number of evaluations per run by EP was only 25,000
Due to space restrictions the results are not shown. How-
ever, it can be said that EP was able to provide similar or
even better results by requiring less evaluations with respect
to the algorithms compared [1, 2, 3].

4. CONCLUSIONS AND FUTURE WORK

The use of evolutionary programming to solve the mini-
mal length addition chain problem was presented. The algo-
rithm is based only on a mutation operator and a stochastic
replacement process to bias the search to competitive so-
lutions by requiring less evaluations per run with respect
to some state-of-the-art nature-inspired algorithms. Four
experiments with different types of exponents were carried
out. Regarding the accumulated addition chains for “small”
exponents, EP was able to provide competitive and even bet-
ter results with only 30% of the evaluations required per run
by two state-of-the-art algorithms. This behavior was also
observed in two sets, one of “hard” and another of “diverse”
exponents where the EP algorithm obtained similar best re-
sults with respect to the three compared algorithms [1, 2, 3],
all of them with a lower number of evaluations. Finally, the
EP algorithm could provide results close to those reported in
experiment 1 by only requiring 25, 000 evaluations per run.

The future work consists on analyzing the parameters re-
quired by the algorithm (n, ¢t and ¢). Moreover, the algo-
rithm will be adapted to solve large exponents (more than
160 bits).

S. ACKNOWLEDGMENTS

The authors acknowledge support from CONACyT project
79809.

6. REFERENCES

[1] N. Cruz-Cortés, F. Rodriguez-Henriquez, and C. A.
Coello-Coello. An artificial immune system heuristic for
generating short addition chains. IEEE Transactions on
Evolutionary Computation, 12(1):1-24, February 2008.
A. Leén-Javier, N. Cruz-Cortés, M. A.
Moreno-Armendériz, and S. Orantes-Jiménez. Finding
minimal addition chains with a particle swarm
optimization algorithm. Lecture Notes in Computer
Science, 5845/2009:680-691, 2009.

L. G. Osorio-Herndndez, E. Mezura-Montes,

N. Cruz-Cortés, and F. Rodriguez-Henriquez. An
improved genetic algorithm able to find minimal lenght
addition chains for small exponents. In Proceedings of
the IEEE Congress on FEvolutionary Computation,
pages 1422-1429. IEEE Press, 2009.

