
Robot Routing in Sparse Wireless Sensor Networks with
Continuous Ant Colony Optimization

Giovanni Comarela, Kênia Gonçalves, Gisele L. Pappa, Jussara Almeida and Virgílio Almeida
Computer Science Department, Universidade Federal de Minas Gerais

Belo Horizonte, Brazil

{giovannicomarela, keniacarolina, glpappa, jussara, virgilio}@dcc.ufmg.br

ABSTRACT

Sparse wireless sensor networks are characterized by the dis-
tances the sensors are from each other. In this type of net-
work, gathering data from all sensors in a point of interest
might be a difficult task, and in many cases a mobile robot
is used to travel along the sensors and collect data from
them. In this case, we need to provide the robot with a
route that minimizes the traveled distance and allows data
collection from all sensors. This problem can be modeled
as the classic Traveling Salesman Problem (TSP). However,
when the sensors have an influence area bounded by a cir-
cle, for example, it is not necessary that the robot touches
each sensor, but only a point inside the covered area. In
this case, the problem can be modeled as a special case of
the TSP with Neighborhoods (TSPN). This work presents a
new approach based on continuous Ant Colony Optimiza-
tion (ACO) and simple combinatorial technique for TSP
in order to solve that special case of TSPN. The experi-
ments performed indicate that significant improvements are
obtained with the proposed heuristic when compared with
other methods found in literature.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless com-
munication, Sensor networks

General Terms

Algorithms, Performance, Experimentation

Keywords

Global Optimization, Ant Colony Optimization, Wireless
Sensor Networks

1. INTRODUCTION
Aggregating information collected by sensors in wireless

sensor networks is essential. However, this task might be-
come difficult for a special type of sensor network which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0690-4/11/07 ...$10.00.

is characterized by nodes being geographically distant from
each other. In this case, making sensors communicate among
themselves and deliver information to a point of interest can
be very costly or even prohibitive, specially due to energy
restrictions (in case of battery-powered sensors).

A possible solution to this problem is to use a mobile
robot to travel to all sensors, download the collected data
and then return to its base station. However, note that it
is not necessary for the robot to make physical contact with
the sensors to communicate, once each sensor has a influence
area, specified by a circumference or disk. Hence, the robot
only needs to reach the border (one point) of this area to
start the data transfer. In this case, the problem of routing
robots is find a path from where the robot can track and
collect information from all sensors with the lowest possible
cost.

Figure 1 shows a sample instance of the routing problem
with five sensors, and a valid path connecting all regions
from starting point s. The influence areas of the sensors may
be different due to different battery charges and different
sensor types. Although there might be overlapping in these
influence areas, this work assumes that no influence areas
overlap.

Figure 1: Example of robot routing in a network
with five sensors [9].

The robot routing problem in a wireless sensor network
can be treated as a special case of the Traveling Salesman
Problem with Neighborhood (TSPN) [7], where the neigh-
borhoods are disjoint circles in a two-dimensional space. The
TSPN is a generalization of the Traveling Salesman Problem

599

(TSP), which is known to be NP -Hard [1]. For simplicity
of notation, throughout this text the TSPN acronym will
be used to refer to the problem of optimal routing in sparse
sensor networks with mobile robots.

Heuristics to solve the TSPN usually divide the problem
solution in two phases [9, 2]: a continuous and a combina-
torial phase, and each of these phases is solved separately.
The approach proposed here differs from the previous as it
considers both the continuous and combinatorial phases si-
multaneously. The idea is to combine the strategies used by
Yuan et. al. [9] and Safra et. al. [7] using a continuous
version of Ant Colony Optimization (ACO) [4].

Experiments show that solving both phases simultane-
ously leads to better results than those obtained by other
approaches found in the literature (and that address each
phase independently) with high statistical confidence.

The remainder of this paper is organized as follows: Sec-
tion 2 presents a formal definition of the TSPN problem
and Section 3 presents related work. The new approach
proposed and the methods previously published that are its
base are in Section 4. Section 5 presents the findings of this
study, and compare it with the methods already proposed
int he literature. Finally, Section 6 presents conclusions and
interesting points for future studies.

2. PROBLEM DEFINITION
The objective of this section is provide the basic defini-

tions of objects in a sparse wireless sensor network. The
notation was borrowed from [9].

In the networks considered, each wireless sensor has a
neighborhood (influence area), represented by a circular re-
gion in the plane, and represented by a center coordinate e =
(x, y) and radius r. An instance of the problem is specified
by a initial point s and a set of n disks {s, (e1, r1), . . . , (en, rn)}.
The radius of each disk can be different from each other de-
pending on the type of sensor and how much battery it has
left. It is assumed that the sensor network is sparse and
there is no intersection between the circles. In practice, note
that if the robot initially have access to data of one or more
sensors, these can be removed from the routing problem.

The robot can start communicating with the sensor as
soon as it reaches their influence area (in other words, once
it reaches its border). After downloading data from a sensor,
the robot moves to the next point. Consequently, the path
of the robot is built sequentially, connecting s with the other
n border points (access points) of each sensor.

Let p be the set of n points to visit, and π a permutation
on p. Then a valid path for the robot will be specified by
the tuple < s, p, π >, where the objective of the problem is
to find p and π that minimize the following function:

d(s, pπ1
) + d(s, pπn

) +
n−1
∑

i=1

d(pπi
, pπi+1

), (1)

where d(P1, P2) is a function that computes the Euclidian
distance between points P1 and P2.

In Eq. 1 there are two groups of parameters to be opti-
mized: the visiting points (p) and the order they are visited
in the path (π). Once that each region is represented by a
circle, each point can be represented by an angle α, as shown
in Figure 2. This representation was used to have only one
variable to represent each point pi = (xi, yi) instead of two.

In addition, note that the points will always be in the border
of the influence area of each sensor.

Figure 2: Visiting point p represented by α [9].

3. RELATED WORK
What makes TSPN an interesting problem to be studied

is the fact that in any given wireless network with n sensors
to be visited, 2n variables must be optimized. From these
2n variables, half are related to the vector π (combinatorial
component of the problem) and the other half regard the
visiting point (continuous component, represented by the
angles αi, i = 1, . . . , n). Simultaneously optimizing these
2n parameters (ideal situation) is a very complex task, as it
involves exploring two search spaces of very different nature.

Due to this degree of complexity, the main approaches
found in the literature divide this problem into two subprob-
lems: one to solve the continuous part and another to solve
the combinatorial part of the problem. In order to illustrate
that, Sections 3.1 and 3.2 present two common approaches
used to deal with this problem, while Section 4 presents the
heuristic proposed in this paper, which combines combina-
torial and continuous searches for TSPN.

3.1 Greedy Solution
Elbassioni et al. [2] proposes a greedy approach for solving

the Euclidean TSPN with disjoint regions of varying sizes.
It is described in Algorithm 1:

Algorithm 1: Greedy Solution by [2]

Data: n circles in the plane specified by
(e1, r1), . . . (en, rn)

1 Sort the n regions in increasing radius order
2 Select p1 randomly in the smallest region
3 for i← 2 to n do
4 Select pi that minimizes d(pi, pj), j = 1, . . . , i− 1
5 end
6 Solve an Euclidian TSP for points p1, . . . , pn

In order to find a solution for TSPN, Algorithm 1 first de-
termines the n points to be visited in each region (part of the
continuous solution) and then establishes the visiting order
of these points by solving a TSP (solution for the combinato-
rial part). In the context of the problem addressed here, line
2 will select the actual s, which is treated as a circumference
of radius 0.

This algorithm has low computational complexity and is
deterministic (assuming an algorithm for solving the TSP
also has these characteristics). However, due to its greedy
nature, in certain TSPN instances it can obtain poor results.
In fact, it can produce results up to 36 times worst than
the optimal [2]. Note that this is without considering the
error obtained by the TSP approach, which is assumed to

600

be optimal. In this work, the heuristic used to obtain a
solution for TSP is the Nearest Neighbor with 2-OPT [5].

3.2 Continuous Heuristics Solution
The work presented in [9] proposes a methodology for

solving the TSPN that is also based on the principle of de-
composing the problem into continuous and combinatorial
steps. The main difference of this approach to Algorithm
1 is that it solves TSP using the coordinates of the center
of circumferences and then determines the points of visit in
each region using an optimization algorithm. Algorithm 2
illustrates this idea.

Algorithm 2: TSPN Algorithm [9]

Data: n circles in the plane given by
(e1, r1), . . . (en, rn)

1 Solve an Euclidean TSP for the points e1, . . . , en
2 Search for the best n hitting points based on

permutation given in step 1

Let πc be a permutation of sensors (center of the circles)
obtained from an optimal TSP solution and πr a permuta-
tion of the regions obtained by an optimal solution of TSPN.
The key to Algorithm 2 is to use πc instead of unknown πr

in the search for optimal points of visit.
The advantage of this approach is that, given a permu-

tation of the circles, it is possible to accurately determine
the access points. This can be done using advanced opti-
mization techniques rather than the greedy approach used
in Algorithm 1. The validity of this heuristic is given by the
strong relationship between the TSPN and the associated
TSP. For example, when all circles have radius equal to 0,
the TSPN solution is identical to the TSP. The idea is to
rely on the fact that as the sensors are distant from each
other and the sizes of the disks become smaller compared
with the distances between their centers, this relation tends
to remain true. However, there is no guarantee that πc and
πr are always equal.

For any disk with radius greater than zero, the visiting
point is given by the angle α, as shown in Figure 2. In
general, α ∈ [0, 2π). An important point of the algorithm
presented in [9] is the fact that, knowing the order to visit
the regions, it is possible to reduce the search space signif-
icantly without impacting the accuracy of the optimization
algorithm. In order to understand how this can be done,
consider two regions A and B, where A must be visited im-
mediately after B. All possible visiting points in A can be
represented as a result of the intersection between the circu-
lar boundary of A and the lines passing through the points
visited in B. Figure 3 shows the typical situation described
in this scenario. Assuming that the path is directed from B
to A, the angles values θ and γ (in absolute) are given by:

θ = arcsin
∣

∣

∣

rA − rB
d

∣

∣

∣
and (2)

γ = arcsin
∣

∣

∣

yA − yB
d

∣

∣

∣ , (3)

where rA and yA are the y of A coordinate and radius, rB
and yB are the y of B coordinate and radius, and d is the
distance between the centers of A and B.

Observe that in, Figure 3, regardless of the access point
the robot uses to visit point B, α ∈ [−π

2
− γ + θ, π

2
− γ − θ].

In the general case, the signs of the angles θ and γ can

q

g

q

A

B

Figure 3: Example of distribution of the visited
points in disk A

vary according to the relation between rB and rA, and also
according to the direction of the path (B for A or otherwise).
A discussion of these details can be found in [9].

Step 2 of Algorithm 2 involves a process of continuous
optimization in a n-dimensional space, where n is the num-
ber of sensors in the network. In [9], three evolutionary
algorithms were used for this task. Experiments conducted
showed that the three strategies had similar results. Thus,
for purposes of comparison with [9], this work uses only one
of these approaches regarding the continuous optimization
problem. This approach is known as (1+1)-Evolution Strat-

egy [8].
It is not in the scope of this paper to explain how these

algorithms work. However, its pseudo-code is presented in
Algorithm 3. In this algorithm, X is a n-dimensional vec-
tor and f(X) is the objective function to be minimized.
Gj(X) ≥ 0, j = 1, . . . ,m is a set of restrictions that must

be respected. X
(g)
E represents the best solution found until

the iteration g and X
(g)
N the candidate solution in iteration

g.

Algorithm 3: (1 + 1)− Evolution Strategy

Data: function f : Rn 7→ R and constraints
Gj : Rn 7→ R, j = 1, . . . ,m

1 Define X
(0)
E = {X

(0)
E,i, i = 1, . . . , n} such that

Gj(X
(0)
E) ≥ 0, j = 1, . . . ,m (initial solution)

2 g ← 0
3 repeat

4 X
(g)
N = X

(g)
E + z(g) with components

X
(g)
N,i = X

(g)
E,i + z

(g)
i , where z

(g)
i is a random

variable normally distributed with mean µ and
variance σ2

5 if f(X
(g)
N) < f(X

(g)
E) and Gj(X

(g)
N) ≥ 0 ∀j then

6 X
(g+1)
E ← X

(g)
N

7 else

8 X
(g+1)
E ← X

(g)
E

9 end
10 g ← g + 1

11 until stop criterion;

Preliminary experiments set µ = 0, σ = 0.01 and the stop
criterion to a maximum of 200 000 iterations in the main
loop (parameters similar to those used in [9]). In the context

601

of TSPN, the function f(X) is the path length that will be
traveled by the mobile robot to visit all sensors, and the
constraints are given by the limits obtained for the angles
α.

4. HEURISTIC PROPOSED
In contrast with the previous methods proposed in the

literature, this work suggests to combine the combinatorial
and continuous phases of TSPN to optimize the paths found
by the mobile robots. This is done by using a Ant Colony
Optimization (ACO) algorithm, which uses as its initial so-
lution a path built by Algorithm 1, and optimizes this initial
path using a continuous ACO. After this solution converges,
the ACO looks for a better sensor path again. This pro-
cedure is detailed in Algorithm 4, which describes the two
main steps of the heuristic, which are:

1. Solution Construction: In this step, a set of artificial
ants construct solutions for the instance of the opti-
mization problem. This process is stochastic and con-
siders a pheromone trail and specific information about
the problem;

2. Pheromone Update: Pheromone trails must be mod-
ified according to past experiences of the ants. This
process consists of two phases:evaporation and inten-

sification.

In the context of TSPN, each artificial ant constructs a
solution by generating a pseudo-random number from a ran-
dom variable with normal distribution. This random vari-
able represents the angle α showed in Figure 2. In other
words, for each sensor, a random variable with normal distri-
bution with mean µi and variance σ2

i , (i = 1, . . . , n) is gen-
erated, and solutions are constructed sampling from these
variables.

The values generated from the normal distribution (here
denoted by xi, i = 1, . . . , n) may not be in the valid interval
[0, 2π). Hence, for each of them the following correction
must be made:

xi ←

{

0, if xi < 0 or xi ≥ 2π

xi, if 0 ≤ xi < 2π
(4)

During the solution construction phase, two types of pheromone
are incorporated to the method: the first is represented
by the vector µ = [µ1, . . . , µn] and the second by σ =
[σ1, . . . , σn].

In the second step, the pheromone trails are updated in
order to make the algorithm converge. In [4] the authors
suggest that this update must be performed in two phases.
In the phase of evaporation µ and σ are modified as follow:

µ← (1− ρ)µ (5)

σ ← (1− ρ)σ, (6)

where ρ is the evaporation constant (0 < ρ < 1).
The phase of intensification aims to make solutions gen-

erated in the next iteration closer to the best ones generated
by the algorithm in the current iteration. The values of µ
and σ are modified as follow:

µ ← µ+ ρx (7)

σ ← σ + ρ|x− µ|, (8)

where x is the vector containing the best solution found by
the algorithm.

One important process of the algorithm is how to initialize
µ and σ. Each component of µ is randomly initialized in such
a way that 0 ≤ µi < 2π. For the components of σ, the values
assigned correspond to the arithmetic mean of the lower and
upper bounds of each variable, that is, σi = (2π− 0)/2 = π.

The steps of solution construction and pheromone update

must be repeated until the algorithm converges. In order
to detect this state of convergence, a factor, denoted by cf ,
must be computed. In this work cf is given by:

1

n

n
∑

i=1

σi

π
. (9)

In the initialization step, cf = 1, and the idea is to exe-
cute the algorithm until cf becomes close to 0. When this
happens, each σi is also close to 0 (in Equation 9 is possible
to see that cf → 0 if, and only if, for all i, σi → 0) . So,
once the value of cf become smaller than a threshold it is
possible to say that the algorithm has converged.

Algorithm 4 presents the pseudo-code of the proposed
method.

Algorithm 4: Proposed Heuristic

Data: n circles in the plane given by
(e1, r1), . . . (en, rn)

1 Use Algorithm 1 to solve the problem
2 bestCost = cost of solution found by Algorithm 1
3 bestSolution = solution found by Algorithm 1
4 π = circles permutation found by Algorithm 1
5 Initialize µ and σ
6 Initialize a premature convergence threshold p
7 repeat
8 Generate Candidate Solution (Equation 4)
9 cost = Cost of Candidate Solution (Equation 1)

10 if cost < bestCost then
11 bestCost = cost
12 bestSolution = Candidate Solution

13 end
14 Evaporate µ and σ
15 Intensify µ and σ
16 cf = Convergence Factor (equation 9)
17 if cf < p then
18 Use 2-OPT to improve π, resulting in πnew

19 cost = Cost of Solution (use πnew in Eq. 1)
20 if cost < bestCost then
21 π = πnew

22 bestSolution = Solution generating πnew

23 end
24 Update p
25 Re-initialize µ and σ

26 end

27 until stop criterion;

In lines 1 to 4, the greedy algorithm (Algorithm 1) pre-
sented in Section 3.1 is used to solve the original problem.
The permutation of circles and the points obtained from
this algorithm are used as initial solution for the heuristic
proposed.

From this point, the continuous version of ACO is used

602

to search the best angles (αi, i = 1, . . . , n), representing the
visiting points given the actual permutation of circles π.

Line 5 initialize the vectors µ and σ. The parameter p
in line 6 is a threshold used to decide if the algorithm has
converged or not. The stop criterion for the main loop (lines
6 to 26) is to check if cf < p.

Line 7 generates candidates solutions for the angles from
the pheromone vectors µ and σ. This procedure is done by
generating, for each sensor, pseudo-random number from a
random variable with normal distribution with mean µi and
variance σ2

i , and correcting the solution using Equation 4.
After that, Line 8 verifies if this new solution is better that
the best solution founds so far. In a positive case, Lines 9
to 12 are responsible for saving the new solution as the best
one.

In the next step the pheromone trails are updated through
the evaporation and intensification of the vectors µ and σ in
the lines 13 and 14.

Line 15 computes the convergence factor according to Equa-
tion 9. If cf is smaller than p, it indicates the algorithm is
close to converge. At this point, the algorithm tries to im-
prove the order of visit of the sensors. The idea consists
of using the algorithm 2-OPT [5] to search a better order
to visit the sensors. This algorithm consists of iteratively
removing two edges of the tour and replace these with two
different edges that reconnect the fragments created by the
edge removal, resulting in a new, and possibly shorter, tour.
Such approach is a simple and classical way to improve TSP
tours. More sophisticated strategies can be also considered
in this point. If a better solution is found in line 15, lines 18
to 22 perform the necessary operations to save this solution
as the best one for the next iterations.

Line 23 updates the threshold p. In this work, the rule
p ← 0.1p is used. After that the pheromone trails are re-
initialized. The vector µ receives the value associated with
the best solution found and σ its initial value. The idea of de-
creasing p is to try to improve the combinatorial component
of the problem several times, but only when the continuous
part is stable.

5. EXPERIMENTAL RESULTS
This section presents the experimental results obtained

and compares the proposed heuristic with the solution for
this TSPN proposed in [9]. To represent a wireless sensor
network, points were generated randomly in the Euclidian
Plan (limited on the region [105]× [105]) and each point was
assigned a random radius in such a way that there were no
overlapping circumferences. The number of sensors (n) var-
ied in the set of values {10, 50, 100, 300}, which are almost
the same values used in [9] 1. For each n, 10 random net-
works were generated, making a total of 40 test instances.
For each instance, Algorithms 4 and 2 were run 15 times, in
order to perform a stronger statistical analysis.

It is important to highlight that the proposed method is
not being compared with Algorithm 1, since Algorithm 4
uses its solution as an initial path for the ACO to optimize
(hence, the results of Algorithm 4 are always at least as good
as those obtained by Algorithm 1), and also a comparison
between Algorithm 1 and Algorithm 2 is provided in [9],
where the latter outperforms the former.

The results presented here use parameter configurations

1In [9] the authors present their results for n ∈
{19, 50, 100, 200, 300}. But only one instance for each n.

obtained in initial experiments for Algorithm 4. p (line 6)
receives as its initial value 0.01, and this value decreases over
time until 10−7. The evaporation parameter is ρ = 0.00001.

Experiments were performed using an Intel duo core pro-
cessor with 2.1GHz and 4GB of RAM. The programming
language used was Java (version 1.6). All statistical analy-
sis was performed with R [6].

5.1 Analysis
This section presents the results obtained for the 40 test

instances simulated. Table 5.1 shows the results for in-
stances with 10 and 50 sensors while Table 5.1 for instances
with 100 and 300 sensors. Each cell of the table contains
two values, the first is the mean of the 15 executions and
the second (between parenthesis) is the standard deviation.
The columns present, respectively, Algorithm 4 and 2.

Table 1: Comparison between Algorithm 4 and Al-
gorithm 2 for n = 10 and n = 50

Alg. 4 2 4 2
n

Instance 10 50
1 279314.12 279314.11 461642.25 496530.11

(0.10) (0.02) (1394.38) (1.31)
2 256195.40 256101.35 531722.49 546163.48

(247.77) (0.02) (971.7) (1.12)
3 244152.56 244604.74 550652.81 580817.77

(1751.18) (0.01) (200.21) (1.99)
4 220174.03 220163.25 513158.63 533571.87

(22.44) (0.01) (1013.61) (3.51)
5 258053.98 265651.95 543353.19 555439.65

(120.64) (0.03) (1325.31) (2.12)
6 230221.85 264413.66 479034.41 554386.14

(31.22) (0.02) (2174.24) (1.35)
7 218135.54 257118.70 491604.99 528963.79

(162.35) (0.04) (1245.77) (1.19)
8 279756.11 279754.18 560036.78 601427.53

(5.21) (0.01) (472.99) (2.82)
9 215990.25 216437.85 537140.42 554850.16

(78.78) (0.02) (878.20) (1.98)
10 235199.00 235145.14 504115.72 594933.80

(203.64) (0.04) (2330.49) (4.79)

It can be noticed that, for 10 sensors, each algorithm had
a better performance (shorter path length) in 5 test cases.
For 50 and 100 sensors the proposed algorithm had a lower
mean for all simulated cases. In the last case (300 sensors)
Algorithm 4 was better than Algorithm 2 in 8 out of 10
cases. Even though these results indicate that Algorithm 4
is better than 2 when the average path length is analyzed,
it is important to note that the variance of Algorithm 4 is
much greater than the one in Algorithm 2. Hence, from
this descriptive analysis it is not possible to say which algo-
rithm is the best. Hence, a Wilcoxon statistical test [3] was
performed, and the following hypotheses established:

H0 : µ4 − µ2 = 0 versus H1 : µ4 − µ2 < 0,

where µ4 represents the average path length found by Algo-
rithm 4 and µ2 represents the average path length found by
Algorithm 2.

Table 5.1 presents the p-values for the results of the hy-
potheses tests performed to compare the two algorithms (re-
marking that a low p-value indicates that H0 has high prob-
ability to be false). This table gives statistical confidence

603

Table 2: Comparison between Algorithm 4 and 2 for
n = 100 and n = 300

Alg. 4 2 4 2
n

Instance 100 300
1 687595.79 727089.87 1181593.45 1261379.67

(779.51) (4.46) (940.46) (28.10)
2 638779.09 714987.02 1282028.74 1230194.1

(426.55) (2.10) (1334.31) (19.68)
3 701310.79 763780.80 1310030.34 1355969.36

(817.85) (1.67) (4376.59) (17.68)
4 698096.98 780147.42 1256780.78 1255346.5

(1600.14) (1.82) (788.77) (14.57)
5 702397.56 737594.03 1229095.85 1258425.07

(240.64) (2.19) (2043.82) (11.02)
6 737609.59 753524.60 1283278.27 1332464.88

(1242.04) (3.80) (2133.70) (12.32)
7 749465.35 792600.49 1257135.44 1335256.02

(677.13) (3.41) (1213.70) (17.17)
8 674670.63 693008.23 1145354.16 1284000.23

(204.92) (7.21) (1898.42) (12.70)
9 720883.43 792159.34 1226059.68 1340092.48

(6211.17) (5.34) (1547.62) (17.41)
10 661476.58 705310.28 1207814.39 1293996.4

(1092.54) (5.19) (869.96) (26.16)

to the conjectures discussed in the last paragraph. With a
small significance level, it is possible to say that in tests with
50 and 100 sensors Algorithm 4 had a better performance
than Algorithm 2. Moreover, int 8 of ten cases considering
300 sensors, as discussed before, the results were obtained
by Algorithm 4 are also better than those obtained by Al-
gorithm 2. In the case of 10 sensors it is not possible to
conclude that one algorithm is better than the other.

Table 3: p-values of the tests comparing Algorithms
4 and 2

n
Instance 10 50 100 300

1 0.8053 3.05e-05 3.05e-05 3.05e-05
2 0.1651 3.05e-05 3.05e-05 1
3 0.003357 3.05e-05 3.05e-05 3.05e-05
4 0.1651 3.05e-05 3.05e-05 1
5 3.05e-05 3.05e-05 3.05e-05 3.05e-05
6 3.05e-05 3.05e-05 3.05e-05 3.05e-05
7 3.05e-05 3.05e-05 3.05e-05 3.05e-05
8 0.04163 3.05e-05 3.05e-05 3.05e-05
9 3.05e-05 3.05e-05 3.05e-05 3.05e-05
10 0.9156 3.05e-05 3.05e-05 3.05e-05

5.2 Examples of instance
The objective of this section is to present two examples

of a wireless sensors networks and the routes generated by
the algorithms. The networks have only 25 and 40 sensors
in order to provide a better visualization. Figures 4 and 5
present the networks and routes for each algorithm.

In Figure 4, for Algorithm 2 the path length is 409,936.07,
while for Algorithm 4 it is 326,781.98 representing an im-
provement of over 8%. In the second case, the path length
is 445126.58 and 427560.80 for Algorithms 2 and 4, respec-
tively (an improvement of 4%). Notice that, in these cases,
the main difference between the two solutions is the order

Starting point

Alg. 2

Alg. 4

Figure 4: Example of an instance for a network with
25 sensors.

Starting point

Alg. 2

Alg. 4

Figure 5: Example of an instance for a network with
40 sensors.

in which the sensors are visited. That’s why Algorithm 4
found better solutions than Algorithm 2.

6. CONCLUSIONS
This work presented a new heuristic to solve the problem

of robot routing in sparse sensor networks when the sensor
neighborhoods are circumferences in the Euclidian plane.
We proposed a heuristic that evaluates simultaneously the
continuous and combinatorial components of the problem
using the Ant Colony Optimization technique in its contin-
uous version.

In order to evaluate the performance of the proposed heuris-
tic, it was compared with the most recent heuristic found

604

in the literature in 40 test instances. Statistical hypothe-
ses tests show that the proposed heuristic outperforms the
other strategies for networks with many sensors. However,
when the size of the network is small (n = 10) no significant
improvement is achieved. Note that in practical terms large
networks are the ones we have most interest in.

The proposed heuristic can be easily adapted to solve the
same problem with other kinds of neighborhoods. For exam-
ple, instead of circumferences in the plane, 3D scenarios, us-
ing spherical coordinates can be considered. One important
application would be to work with aquatic wireless sensors
networks, where sensors can have different locations in the
Euclidian plane and different depths.

7. REFERENCES
[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and

C. Stein. Introduction to Algorithms. The MIT Press,
New York, 2001.

[2] K. Elbassioni, A. V. Fishkin, N. H. Mustafa, and
R. Sitters. Approximation algorithms for euclidean
group tsp. In In Automata, languages and programming

: 32nd International Colloquim, ICALP 2005, pages
1115–1126. Springer, 2005.

[3] R. V. Hogg, A. Craig, and J. W. Mckean. Introduction

to Mathematical Statistics. Prentice Hall, 6th edition,
June 2004.

[4] M. Kong and P. Tian. Application of aco in continuous
domain. In L. Jiao, L. Wang, X. Gao, J. Liu, and
F. Wu, editors, Advances in Natural Computation,
volume 4222 of Lecture Notes in Computer Science,
pages 126–135. Springer Berlin / Heidelberg, 2006.

[5] C. Nilsson. Heuristics for the traveling salesman
problem. Technical report, Linköping University, 2003.

[6] R Development Core Team. R: A Language and

Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2008. ISBN
3-900051-07-0.

[7] S. Safra and O. Schwartz. On the complexity of
approximating tsp with neighborhoods and related
problems. Computational Complexity, 14(4):281–307,
2006.

[8] H.-P. P. Schwefel. Evolution and Optimum Seeking:

The Sixth Generation. John Wiley & Sons, Inc., New
York, NY, USA, 1993.

[9] B. Yuan, M. Orlowska, and S. Sadiq. On the optimal
robot routing problemin wireless sensor networks. IEEE
Transactions on Knowledge and Data Engineering,
19(9):1252–1261, September 2007.

605

