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ABSTRACT
This work proposes a cooperative coevolutionary algorithm
for the design of a wireless sensor network considering com-
plex network metrics. It is proposed an heuristic based on
cooperative coevolution to find a network configuration such
that its communication structure presents a small value for
the average shortest path length and a high cluster coeffi-
cient. This configuration considers a cluster based network,
where the cluster heads have two communication radii. The
mathematical model of the cluster head location problem
was developed to determine the nodes which will be con-
figured as cluster heads. This model was adopted within
the coevolutionary algorithm. We describe how the prob-
lem can be partitioned and how the fitness computation can
be divided such that the cooperative coevolution model is
feasible. The results reveal that our methodology allows the
configuration of networks with more than a hundred nodes
with two specifics complex network measurements allowing
the reduction of energy consumption and the data transmis-
sion delay.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network topology, wireless com-
munication; G.1.6 [Numerical Analysis]: Optimization—
global optimization, integer programming ; H.4 [Information
Systems Applications]: Miscellaneous

General Terms
Algorithms

Keywords
Complex Networks, Coevolutionary Genetic Algorithms, Net-
work Design, Wireless Sensor Networks
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1. INTRODUCTION
Wireless Sensor Networks (WSNs) [2] represent an emerg-

ing technology that allows the monitoring and control of
physical and environmental variables and conditions, such
as temperature, sound, light, vibration, pressure, movement,
and pollution. A WSN consists of a great number of wire-
less autonomous devices, spatially distributed, called sensor
nodes, which work in a cooperative way to perform many
different functions. The sensor is usually equipped with
a small-sized micro-controller, a radio transceiver or other
wireless communication device and an energy source. In
WSN applications, sensor nodes are usually not deployed to
pre-determined locations. Random deployment of sensors is
preferred instead.

WSNs differ in many aspects from conventional computer
networks, mainly because they have several resource restric-
tions, such as low computational power, reduced bandwidth,
and limited energy resource. Due to these characteristics,
it is necessary to design specific models, topologies and al-
gorithms to circumvent the difficulties related to this tech-
nology [12, 22]. Among these resource restrictions, energy
consumption is critical. The operation of wireless data com-
munication is the main source of energy consumption: send-
ing one bit demands on average thousand times more energy
than other internal operations and data sensing. Therefore,
algorithms for WSNs need to be carefully designed. Sending
a large amount of data can be problematic, causing excessive
delay in response time, thus invalidating the data. More-
over, a large traffic on the network can diminish its lifetime.
Due to these restrictions, in some cases, it is necessary to
adopt specific infrastructure designs to balance the network
requirements while keeping its functionality.

The information about the phenomenon monitored is re-
ported through the network to the sink node [18]. WSNs
applications, generally, have n-tier (n ≥ 1) architecture de-
signs, where the most used is the two-tier [4, 20]. A two-
tier architecture consists of several clusters and one or more
sinks. Each cluster comprises a number of member nodes,
responsible for the sensing task over the corresponding area,
and a cluster head is designated to collecting data from the
local sensors and routing them to the sink. Such cluster-
based architecture offers some inherent advantages against
the flat one in terms of energy consumption: (i) only the
cluster head nodes are involved in routing task and the lo-
cal nodes only transmit the sensed data to a cluster head
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nearby. Thus the energy consumed in data transmission
could be substantially reduced; and (ii) considering that only
the cluster head transmits data out of the cluster, this helps
to save energy by avoiding collision between local nodes [1,
9, 10].
In this paper, we propose a coevolutionary algorithm [13,

15] to design a two-tier WSN considering complex network
measurements [6]. The main contributions of this work are:

• The main problem is partitioned into smaller ones, en-
abling the efficient use of a cooperative coevolutionary
algorithm;

• Based on the characteristics of the problem, a new ini-
tial population generator was implemented. This gen-
erator is based on the centrality betweenness metric;

• The method has a faster convergence, when compared
with other approaches. This occurs because of the bet-
ter set of individuals generated by the population gen-
erator.

This work is organized as follows. In Section 2, we present
the network design and problem definition. In Section 2.1 we
discuss about the problem formulation. Next, in Section 3,
we show the cooperative coevolutionary algorithm proposed.
Simulation results are shown in Section 4, and Section 5
concludes this study and presents the future work.

2. PROBLEM DEFINITION
As mentioned before, data transmission is the most expen-

sive operation in the network. Therefore, considering the
whole network, data propagation (routing) from all nodes
to the sink is directly related to the life time of the net-
work. A simple naive, but inefficient, way of propagating
information through the network is flooding. In this case,
the information is flooded to all sensors until it reaches the
sink node [14]. This strategy causes unnecessary communi-
cation, consequently, a large energy consumption and a high
response time to deliver the data.
A common alternative to flooding is tree routing, a sim-

ple and low-overhead routing protocol. Using a tree routing,
each sensor is configured to send its data only to a specific
sensor node, denoted father node. The choice of which node
will be the father depends on the policy established by the
application, in general, the shortest path policy is used [16].
The major drawback of tree routing is the increased hop
counts as compared with more sophisticated path search
protocols. However, there is a significant energy consump-
tion because the link is kept, i.e., all non father nodes per-
ceive the propagated data.
Additionally, considering applications that use thousands

of nodes working independently and together [7], some strate-
gies based on tree routing might not be scalable. An alter-
native routing strategy based on complex network measure-
ments (Figure 1), consists in setting some sensor nodes as
cluster heads based on the energy or communication flow,
these ones using a communication radius greater than that
used by normal nodes. Normal nodes propagate their data
to a given cluster head using a normal link frequency, and
the cluster heads propagate their data to the sink node using
a special link frequency. In both cases it is used a multi-hop
communication. The use of these cluster heads leads to im-
portant characteristics of complex networks: a small average

shortest path length between all sensors and the sink; and
a high cluster coefficient, see [21]. This complex network
characteristics help us saving network resources, avoiding
excessive communication, and reducing the time to data de-
livery.

Sink

Sensor

Hub

Figure 1: Complex network propagation.

In fact, the proposed approach gives rise to a complex
network, which is a network with irregular, complex and
dynamic structure [5]. The theory of complex networks pro-
vides a mathematical framework for analyzing a number of
real-world networks that otherwise could not be addressed
with the available traditional models. The theory of complex
networks can be useful in the study of WSNs, given some
of its peculiar characteristics, such as the quantity, increase,
and distribution of nodes in the network.

Based on these aspects, the problem addressed in this
work can be stated as follows: Consider a geometric graph,
G = (V,E), where V represents the set of sensor nodes
and E the set of edges, representing the logical links between
nodes. These links are determined considering the commu-
nication geometry of the node, i.e., all neighbors reachable
by the node v ∈ V . The problem is to find the better nodes
v ∈ V that should enable the auxiliary radii, and hence be
configured as cluster heads, generating a new set of edges E′

and therefore a new network G′ = (V,E ∪ E′), such that
G′ can be characterized as a complex network with a small
average shortest path and a high cluster coefficient.

Therefore, the main hypothesis considered over the prob-
lem is: Characterizing the WSN physical layer as a complex
network allows us to build a two-tier WSN logical topology
that minimizes the energy consumption and delay.

In this paper only the complex network measurements will
be verified and evaluated in the physical layer. The verifi-
cation of the logical topology performance will be reported
in future work.

2.1 Problem Formulation
In this section, the conventional cluster head allocation

problem formulation is described. Initially, consider the
mathematical formulation of the single allocation problem
in sensor networks, which is an approach to the problem
stated above.

Given a network with a set of nodes, the problem consists
of finding the nodes that will be reconfigured as cluster head
and also the logical links that should be established in order
to minimize the total cost. Let N be the set of normal nodes
and H be the set of cluster head, such that N ∪H = V and
N ∩H = ∅.

The parameters of our mathematical model are: ϕi is the
communication demand, i.e., the total amount of data that
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node i must send to the sink; r is the basic communication
radius; dij is the distance between node i and node j; cij is
the fixed communication cost per data unit from node i to
node j; aj is the fixed installation cost of node j as a cluster
head. It is inversely proportional to the distance between j
and the sink, i.e., the higher the distance from j to the sink,
the lower the installation cost.
The decision variables of the mathematical model are zi ∈

{0, 1}, zi = 1 if node i is defined as cluster head, and zi = 0,
otherwise; and qij ∈ {0, 1}, qij = 1 if there is a logical link
between nodes i and j, and qij = 0, otherwise.
A nonlinear integer programming formulation of the prob-

lem defined above is given by:

z∗ = argmin
∑
i∈V

aizi +
∑
i∈H

(∑
j∈N

ϕjcjiqji

)
+

+

(∑
k∈H

(cikqik + ck0)

)
×
∑
i∈H

(∑
j∈N

ϕjqji + ϕi

)
(1)

The objective function (1) gives the total cost for estab-
lishing the two-tier network. This total cost includes the
installation cost, first term in (1), and the propagation cost.
The second term in (1) expresses the propagation cost of
data from all sensors to their corresponding cluster heads,
while the third term represents the total amount of data that
the cluster head i ∈ H must send to the sink, which is mul-
tiplied by the cost of sending the data to the sink through
cluster head k ∈ H, where k may be equal to i or may be
a different cluster head. This results in two or three hops
from any node in the sensor network to the sink.
The objective function is subject to the following con-

straints: ∑
j∈V

qij = 1, ∀i ∈ N (2)

∑
j∈H

qij ≤ 1, ∀i ∈ H (3)

qij ≤ zj , ∀i ∈ N, ∀j ∈ H (4)

dijqij ≤ 2r, ∀i ∈ N, ∀j ∈ H (5)

dij ≤ 3r, ∀i ∈ H, ∀j ∈ H (6)

z, q ∈ {0, 1} (7)

which are detailed as follows: the constraint (2) guarantees
that a node i ∈ N is connected to only one cluster head; the
constraint (3) guarantees that data from the cluster head i is
either routed through one cluster head or directly to the sink;
(4) ensures that data from node i ∈ N is only routed through
a cluster head node; (5) Ensure that the distance between
the node i and a cluster head j is less than or equal to twice
the communication radius; (6) Ensure that all cluster heads
are within the range of all other ones, using three times the
value of the communication radius; and finally, (7) restrict
the values of the integer variables zi and qij to assume either
0 or 1.
It is important to highlight that, in our case, it is expected

that the data propagated through to sink pass only through
two cluster heads. In additional, there is none cluster head
election strategy that consider the energy and flow parame-
ters to optimize the global topology.

3. COEVOLUTIONARY ALGORITHM
Coevolution can be classified into two types: competitive

and cooperative. Basically, in competitive coevolution, there
is something similar to an “arms race” in which one popu-
lation competes with the other [3], [17]. In this model, the
fitness of an individual is directly related to its ability to
stand out in competition with individuals of other species
that evolve in parallel in their populations. In cooperative
coevolution, a complex problem is divided into smaller and
simpler modules that evolve individuals separately. These
individuals are combined to form a single solution suitable
for the original problem. The fitness of an individual de-
pends on its ability to cooperate with individuals from other
sub-populations. Obviously, the more an individual is able
to cooperate to develop a good overall solution, the greater
its probability of selection among the remaining individuals.
This strategy has shown good results in solving complex
problems [13], [15].

Given these characteristics, we develop a heuristic-based
Cooperative Coevolutionary Algorithm (CCA) to solve the
problem presented in the previous section, which is the de-
sign of the physical structure in a WSN based on complex
network theory, that would improve the performance of the
tree based logical topology to be created over this physical
topology.

Two important steps in the definition of any coevolution-
ary model are (i) an adequate division of the problem and
(ii) a suitable encoding of the individuals.

Figure 2: Cooperative Coevolutionary Algorithm
Flowchart

Figure 2 illustrates the CCA. The first step of the algo-
rithm is to load the random geometric graph and generate
the standard population. Then, the problem is divided into
L cells, which each cell run in a thread and has it’s own
subpopulation. The cells are positioned into an execution
queue. The first cell of the queue execute its local evo-
lutionary operators until the cooperation interval. During
this interval, the cell update its local data to cooperate with
others, producing the global solution. Then, the running
cell is positioned at the end of the queue and the next cell in
the queue start its execution. This process repeat until an
stopping criterion is reached. Finally, the best solution ever
found is returned and the complex measurements are calcu-
lated over it. Next subsections describe in more detail the
division of the problem for cooperation, the basic operators
used and the initial population generator developed for the
problem.
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3.1 Dividing the problem for cooperation
The global objective function (1) was explored by a me-

metic algorithm in our previous work [19]. Observing the
solutions obtained by the memetic algorithm for all the prob-
lem instances, we can see that there is not a large number
of cluster heads. The algorithm keeps a balance between
the high installation cost of nodes as cluster heads and the
propagation cost. Figure 3 is an example of a solution re-
turned by the memetic algorithm, illustrating the physical
layer evaluated by the global objective function.

Figure 3: Example of 256 nodes solution.

The installation cost of a cluster head is relatively expen-
sive to the network. The selection of a node as a cluster
head must lead to a significant reduction in the propagation
cost, in order to be advantageous. Hence, the selection of
two or more cluster heads in the same region, generally is
not a good choice. This occurs because the decrease in the
propagation cost does not pay off the increase in the instal-
lation cost. Thus, the installation of just one cluster head
per region is generally enough to keep the information flow
in the network.
Despite the aleatory generation of all problem instances, it

is possible to observe some patterns in the results obtained
after optimization. Some regions are more likely to have
cluster heads than others. Those observations gave us the
idea of applying the divide-and-conquer paradigm and the
coevolutionary algorithm to reduce the main problem into
smaller sub-problems. If, generally, there are two, one, or no
cluster heads per region in the best solutions, we can divide
the network into several square areas and divide the main
problem into sub-problems, such that each one consists in
searching cluster heads for each area, if needed. Therefore,
the difficulty of solving the original problem is diluted into
the search for local cluster heads in each cell. Each cell
is associated with a population of individuals encoding a
partial solution for that cell, i.e., the cluster heads in that
cell. Individuals in each cell cooperate to produce a complete
solution, which is the topology of the whole network.
It is relevant to remark that the basic genetic algorithm is

not capable of finding good solutions for this problem as the
memetic algorithm is, see [19]. However, the execution time
of the memetic algorithm is very high. Applying the divide-
and-conquer paradigm, and the cooperative coevolutionary
algorithm, it is possible to reach solutions as good as the
hybrid ones with less computational effort.

3.2 Fitness computation
In the new problem formulation, the network is divided

into a grid of homogeneous cells where each one has a local
objective function. Individuals in each cell use this local ob-
jective function to compute their fitness values. The local
objective function considers the installation cost of the clus-
ter head in the cell and the evaluation of the propagation
cost analyzes only the nodes that can be covered by nodes
in the cell, whereas in the global objective function all nodes
are analyzed.

Figure 4 illustrates the idea of the cell coverage for a given
cell Ci, 1 ≤ i ≤ L. The gray square represents the cell area.
The set of nodes covered by the cell i is denoted by Ki

and is given by all nodes in N that are within the radius
of at least one node in Ci. The dots in Figure 4 represent
the nodes in Ki. Notice that the set of nodes covered by
Ci contains some nodes in adjacent cells. We can see that
there are sensors within the cell that are not connected to the
cluster head of the cell, while there are outer sensors that are
connected to the cluster head. Therefore, the cluster head
accepts connections from any node in Ki, including nodes
in adjacent cells. Hence, during fitness evaluation, each cell
computes only the flow from the nodes that are connected
to an inner located cluster head, but all the covered nodes
are checked.

Figure 4: Example of cell coverage.

Let Qi be the set of inner cluster heads in cell Ci, Ki

be the set of nodes covered by cell Ci, such that |Qi| ≥ 0,
Qi ⊂ H, Ki ⊂ N , Qi ∩Ki = ∅.

The network configuration in each cell can be represented
by an integer string of variable size, representing the indices
of the nodes that are configured as cluster heads. Each in-

dividual p
(k)
i,t in the sub-population Pi,t is represented by an

integer vector indicating the cluster heads in the cell Ci at
generation t.

We can define the following heuristics in order to eliminate
the decision variables qij in the model (1) when solving the
problem with the CCA:

• Given an individual p
(k)
i,t ∈ Pi,t, we obtain the set of

nodes in Ki and the set of cluster heads in Qi: if s /∈
p
(k)
i,t , then node s is in Ki, otherwise node s is in Qi;

• As a general rule, every node i ∈ N sends its data to
the cluster head j ∈ H with the smallest cost cij , which
is usually the closest one. In this way, we automatically
set the corresponding qij to 1.

The computation of the propagation cost for cell Ci con-
siders only the cost of propagating data from nodes in Ki
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that are connected to a given cluster head in Qi and the cost
of routing data from the cluster heads in Qi to the sink.
With these simplifications, the variables qij are implicitly

calculated from the cluster head allocation provided by an

individual p
(k)
i,t ∈ Pi,t, thus simplifying the computation of

the propagation cost. The computation of the installation

cost is simply given by making zs = 1 if s is in p
(k)
i,t , s ∈ N ,

and zs = 0 otherwise. Moreover, constraints (2)-(4) can
be neglected altogether in the model. We consider only the
following constraints: (i) the distance between a node i ∈ N
and its associated cluster head should be smaller than 2r, in
other words, every node i ∈ N should have a cluster head
within its communication range; and (ii) the distance from
every cluster head to each other should be smaller than 3r.
When violations of any of these constraints occur for a

given individual, its value of the objective function is pe-
nalized accordingly. With the assumptions discussed in this
section, we can employ a simplified yet nonlinear model for
the problem. This shows the flexibility of CCAs in solving
nonlinear integer optimization problems.

3.3 Basic Operators
The first step in the CCA is to set the cells Ci, i =

1, . . . , L, and their sets Ki of covered nodes, based on their
coordinates and communication radius. Then, an initial
population for each cell is generated by using the new popu-
lation generator described in the next subsection (subsection
3.4). Each cell has its own subpopulation with µ individu-
als, each one encoding candidate configurations for the cell.
From this initial population, each cell sets its representa-
tive individuals. The representative is the best individual
that each cell uses to perform the cooperation amongst the
other cells. The combination of each individual and the rep-
resentatives from other subpopulations generates the global
solution to the main problem.
Each cell evolves and evaluates its local subpopulation in-

dependently from each other, considering the local objective
function, as described before, until the cooperation interval
is reached. The cooperation interval γ was set to 5 gen-
erations. At every γ = 5 generations, cells communicate
their best solution based on current information about the
representatives from other cells.
During the cooperation interval, each cell updates its in-

formation about the representatives from other cells. The
cell containing the cluster head that is the nearest one to the
sink is elected as the master cell. It is responsible for evalu-
ating the global solution during the cooperation interval and
storing the best individual.
The evolution of each subpopulation is implemented using

binary tournament selection for the reproduction, in which
two individuals are randomly selected from the current pop-
ulation and compete against each other, and mutation oper-
ators specifically designed for the encoding scheme adopted.
There are no crossover operators.
The new candidate solutions are produced only by muta-

tion operators. There are three mutation operators with the
same mutation rate ρm = 0.1. The first mutation adds at

random a new cluster head from Ci into the vector p
(k)
i,t . The

second mutation randomly swaps one cluster head in p
(k)
i,t for

a new cluster head from Ci. The third mutation operator

removes at random a cluster head from p
(k)
i,t . These opera-

tions allow an individual to have both an empty vector of
cluster heads and a vector containing several cluster heads.

3.4 Population Generators
In our previous work [19], the initial population was formed

by randomly generated individuals, containing 30% of its
nodes set as cluster heads, called 30 Percent Random (30PR).
As observed, optimized solutions generally have much fewer
cluster heads. The following generators can be devised:

30 Percent Random (30PR): Individuals are generated
with 30% of its nodes encoded as cluster heads;

L Overall Random (LOR): Individuals are generated with
L nodes selected as cluster heads;

L Cells Random (LCR): Individuals are generated with
L nodes selected as cluster heads, but ensuring only
one cluster head in each cell;

In this paper we propose a new population generator that
is more suitable for the design of WSNs. It is based on
the betweenness centrality value [8] of the nodes. The be-
tweenness centrality can be interpreted as a measure of the
influence a node has over the spread of information through
the network. It can be measured as a fraction of the short-
est paths between pairs of vertices in a network that pass
through the node. In other words, the betweenness can
quantify the importance of a vertex to the network, which
can be defined as follows:

Bu =
∑
i

∑
j

σ(i, u, j)

σ(i, j)
, (8)

where σ(i, u, j) is the number of shortest paths between ver-
tices i and j that pass through vertex u, σ(i, j) is the total
number of shortest paths between i and j, and the sum is
over all pairs i, j of distinct vertices [6].

First, the betweenness centrality of the nodes in V is mea-
sured. Then, a probabilistic operator based on such values
is applied to select each cluster head for all cells. This pop-
ulation generator is called L Cells Betweenness Centrality
Based (LCBCB). The probability ρQi of a node u ∈ Ci to
be selected as a cluster head can be defined as follows:

ρQi(u) =
Bu∑

k∈Ki
Bk

, (9)

In other words, the higher the importance of the vertex u
for the covered set Ki, the greater the number of paths in
which u is inserted, and the higher the probability ρQi(u)
is.

4. SIMULATION RESULTS

4.1 Results of the Population Generators
Table 1 compares the efficiency of all four population gen-

erators, considering that the region is divided into a 3 × 3
grid, such that L = 9. The table contains the average, best
and worst values of 3300 fitness evaluations, such that 100
individuals were evaluated for each one of 33 random in-
stances, for each network size. These fitness values were
normalized, divided by 10log2|V |.
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Table 1: Performance of the population generator
algorithms.

64 nodes
Worst Average Best

30PR 4728.4 ± 628.5 2761.7 ± 411.0 1041.416 ± 408.1
9OR 1382.1 ± 210.7 589.2 ± 88.0 59.875 ± 48.1
9CR 1146.2 ± 142.9 632.8 ± 87.9 202.716 ± 64.5

9CBCB 572.1 ± 81.1 252.7 ± 70.1 80.701 ± 53.7
128 nodes

Worst Average Best

30PR 4896.5 ± 339.6 3716.8 ± 217.0 2573.6 ± 291.9
9OR 362.5 ± 33.6 192.7 ± 10.3 54.2 ± 22.0
9CR 314.0 ± 22.4 210.8 ± 9.3 104.5 ± 21.4

9CBCB 208.4 ± 14.6 123.7 ± 9.1 59.6 ± 11.7
256 nodes

Worst Average Best

30PR 3859.2 ± 161.7 3320.6 ± 142.6 2795.0 ± 180.1
9OR 78.7 ± 8.8 43.6 ± 1.9 18.0 ± 4.9
9CR 66.3 ± 3.7 47.3 ± 1.2 29.7 ± 3.9

9CBCB 50.6 ± 4.2 33.8 ± 1.4 20.7 ± 1.8
512 nodes

Worst Average Best

30PR 2725.7 ± 56.3 2505.4 ± 55.4 2290.8 ± 71.1
9OR 25.1 ± 3.7 8.5 ± 0.2 3.9 ± 0.7
9CR 18.4 ± 1.6 9.1 ± 0.2 6.3 ± 0.4

9CBCB 16.3 ± 1.4 7.1 ± 0.2 4.8 ± 0.3

Choosing the number of cluster heads based on a fixed
percentage of say 30% produces the worst results for all net-
work sizes. The strategy 9CBCB provided, in average, bet-
ter individuals, which shows the existence of a relationship
between high measurements of the betweenness centrality
of the cluster heads and the quality of the initial solutions.
For all network sizes, the strategy 9OR was better than 9CR
for the average and the best values, but again the 9CBCB
generator provided better individuals on average. Although
the best individuals produced by 9OR are on average slightly
better than those produced by 9CBCB, the smaller standard
deviation shows the robustness of the 9CBCB generator.
In instances with many nodes, N = 256 and N = 512,

the differences between the results provided by 9OR, 9CR
and 9CBCB strategies decrease, but they are all much bet-
ter than solutions generated by 30PR. This indicates that
the partition of the region into 9 cells was very useful for
the generation of good individuals. On the other hand, the
attenuation of the difference for bigger instances was proba-
bly caused by the decrease in the probability of selecting the
best cluster heads. However, for all instances, the 9CBCB
strategy shows to be considerably better than the previous
ones.

4.2 Results of the Coevolutionary Algorithm
The coevolutionary algorithm searches for a WSN con-

figuration with a physical topology that meets the given
complex network measures, i.e., a network having a small
average path length between every node and the sink and a
high clustering coefficient. Thus, when a tree based routing
is built over this physical topology, the data traffic is reduced
and consequently the energy consumption and the data de-
livery time are reduced. Initially, we present some general
assumptions for the coevolutionary algorithm evaluation:

Simulations: The simulation was performed with the algo-
rithm implemented in Java. The coevolutionary algo-

rithm was executed considering a population of µ = 50
individuals, for 500 generations, with the maximum
tolerance of 50 generations without any improvement
in the current best solution. The number of necessary
simulations is given by [11]:

#rounds =
(100 ξ σ

ρX

)2
, (10)

where ξ is a constant of value 1.96, σ is the standard
deviation found in the first simulations, X is the aver-
age of the obtained values and ρ is the percentage of
the average that we want to get as deviation, which in
this case was 5%. We consider 30 rounds with ran-
dom topologies, and for each topology we executed
the genetic algorithm 33 times and the results are pre-
sented with symmetrical asymptotic confidence inter-
val of 95%. The tests are executed in a machine Intel
Core i5 2.4GHz with 4GB RAM.

Network topology: The network density is kept constant,
the area is A = π r2 |V |/δ, where r is the radius range,
|V | is the number of nodes and δ is network density
(arbitrarily chosen with the value 8.4791). The nodes
started the execution with the same hardware config-
uration, at the end the cluster head nodes reconfigure
their radio frequency based on the infrastructure so-
lution. Thus, the final solution has a heterogeneous
WSN.

Resultant configuration: Consider G = (V,E) the ini-
tial WSN graph and G∗ = (V,E∗) the graph returned
by the coevolutionary algorithm. The resultant con-
figuration, used in a real network will be the graph
G′ = (V,E′), where E′ = E ∪ E∗. Thus, the cluster
coefficient and the average shortest path length are cal-
culated considering those graphs. Finally, the number
of installed cluster heads and the time to compute the
results is shown.

Table 2 show the results comparing the Basic Genetic
Algorithm (BGA) and Hybrid Genetic Algorithm (HGA),
see [19], with the new cooperative coevolutionary algorithm
(CCA), considering the variation of the number of nodes as
{64; 128; 256; 512}. The evaluated parameters are: (i) num-
ber of installed cluster heads; (ii) the fitness of the solutions,

whose values were normalized, divided by 10log2|V |, where
|V | is the number of nodes; (iii) execution time needed (in
seconds) to reach the best solution; and (iv) the convergence
in generations. Table 3 compares the results of the initial
random geometric graph G and the complex graph G′ using
two complex network metrics: (i) the cluster coefficient; and
(ii) the average shortest path length. These metrics were
not directly taken into consideration during the evolution-
ary process, representing a consequence of the optimization
rather than an explicit objective of the problem formulation.

The results presented in Table 2 and Table 3 show that,
with the coevolutionary algorithm, it is possible to build
a physical topology of the WSN with two specific complex
network characteristics, the high cluster coefficient and the
low average shortest path length. As we can see, the cluster
coefficient of the graph G′ is roughly the same value of the
original geometric graph G, and the average shortest path
length of the graph G′ for the networks was reduced, when

612



Table 2: Comparison of the performance of the previous versions and the new coevolutionary algorithm.
N Cluster Heads Fitness(.10log2N ) Time to Best (s) Convergence (g)

BGA HGA CCA BGA HGA CCA BGA HGA CCA BGA HGA CCA

64 8 4 4 23.289 20.925 44.165 1.39s 7.63s 0.29s 109.610 11.578 28.315
128 11 6 6 67.317 43.457 51.918 5.15s 3m 53s 2.41s 104.580 16.268 40.386
256 27 6 8 222.932 31.857 36.643 46.73s 1h 13m 19s 20.98s 131.150 39.414 60.207
512 96 9 8 832.056 13.525 14.100 7m 6s 22h 35m 17s 1m 59s 118.830 31.216 46.623

Table 3: Comparison of the considered complex net-
works metrics.
N Clustering Coefficient Average Shortest Path

G BGA HGA CCA G BGA HGA CCA

64 0.73 0.73 0.73 0.73 1.96 1.95 1.94 1.93
128 0.69 0.69 0.70 0.69 2.67 2.61 2.54 2.57
256 0.66 0.65 0.66 0.66 3.67 3.51 3.60 3.40
512 0.63 0.66 0.63 0.65 5.09 4.22 4.92 4.57

compared with the original geometric graph G. Based on
this physical topology, a routing algorithm can be used to
build the best tree based logical topology. Considering en-
ergy consumption and delay, this new logical topology based
on complex network measures will always be better than
a logical one based on the original geometric graph. This
occurs because the number of retransmissions is greatly re-
duced when cluster head nodes are used.
The quality of the solutions returned by the CCA are as

good as the solutions returned by the HGA, except for the
instances with 64 nodes. For small network sizes, the so-
lutions returned by the hybrid algorithm did not have the
same cluster head location behavior as observed in the other
instances. Therefore, the idea of dividing the network into a
grid was not very helpful for small instances. However, for
the instances with a higher number of nodes, the CCA is,
in a sense, better than the other algorithms, because it can
provide good physical topologies for the network with the
best execution time. The elapsed execution time to reach
the best solution of the CCA is lower than for the other al-
gorithms, for all network sizes. This shows that the divide-
and-conquer approach was indeed advantageously applied:
the main problem could be reduced into smaller problems
that are easier to solve, making the cooperative coevolu-
tionary approach very useful for this problem.
On the other hand, the bad performance of the BGA can

be justified by the use of inappropriate genetic operators and
a superficial exploration of the problem nature. Usually, the
topologies provided by the BGA have a high unnecessary
number of cluster heads, which are expensive for the whole
network. Moreover, the binary codification of the individu-
als into |V | bits, used in BGA, is inefficient due to the low
number of cluster heads that are needed.
Considering the tree based routing aspects over the phys-

ical topology, a low average shortest path length avoids,
mainly, the data delivery delay. The drawback, in this case,
is that when the extra radio is enabled more energy is con-
sumed, but considering the global energy consumption, this
approach can actually save energy. The complex network
having a smaller value for the average shortest path length
provides a logical topology with low energy consumption,
because a smaller number of hops will be necessary to send

data to the sink. Therefore, there seems to be some relation
between low fitness in the BGA and small value for the av-
erage shortest path length. But the results of the HGA and
CCA show that the reduction of fitness values and the fewer
cluster heads causes a small increase in the average shortest
path length. The reason for this behavior is that when less
cluster heads are allocated in the network, the complex net-
work resembles a geometric network, i.e., there will be fewer
edges connecting distant points, leading to a small increase
in the average shortest path length. Therefore, the average
shortest path length of a complex network with fewer clus-
ter heads, corresponding to the solution found by both the
HGA and CCA, tends to approach the value of the average
shortest path length of the geometric network. In contrast,
excess cluster heads examined in the solutions returned by
the BGA caused a reduction in the average shortest path,
because there are more alternative paths, however the high
installation cost of cluster heads makes them inefficient.

For the instances with 64 nodes, in which the cluster
heads of the BGA and HGA solutions are more spatially
deployed, the lower average shortest path is found in the
CCA solutions. That occurs because the CCA cluster heads
are concentrated inside its grid cells, resulting from the be-
tweenness centrality based individuals. For the instances
with 128 nodes, the HGA solutions have a high centering
location. That explains why its solutions have the lowest
average shortest path. However, for the instances with 256
and 512 nodes, despite the good quality of the HGA solu-
tions, the lower number of cluster heads results in a lower
number of edges in the set E∗, which are not sufficient to
provide a significant reduction of the average shortest path.
The BGA solutions have the lowest average shortest path
for the instances with 512 nodes, since the excessive inser-
tion of unnecessary cluster heads provides a larger set E∗ of
edges. The installation of 96 cluster heads produces a high
installation cost, which is too expensive for the network and
can not be deployed in practice. Hence, again, the CCA
solutions present themselves as the best option.

5. CONCLUSIONS AND FUTURE WORK
This work presented a cooperative coevolutionary algo-

rithm for fast design of the physical topology in WSN. The
goal was to produce a physical topology that presents a
high clustering coefficient and a small average shortest path
length, which are two independent metrics from the com-
plex network theory for quantifying structural features of
the network. This physical topology could be used to im-
prove the tree based routing in order to minimize power con-
sumption and delay. For networks with hundreds of nodes,
for instance the network with 512 nodes, the cooperative co-
evolutionary algorithm was satisfactory, obtaining a physical
topology that satisfies the complex network characteristics.

The results showed that the cooperative coevolutionary
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algorithm can find a WSN design with two specific complex
network characteristics. This was highlighted in our results
that showed that the cluster coefficient of the resultant graph
is the same or slightly higher when compared to the original
geometric graph, and the average shortest path length of the
resultant graph, in our specific scenario, was reduced when
compared to the original geometric graph. The coevolution-
ary algorithm was able to achieve high quality solutions with
the smallest elapsed time, representing configurations with
few nodes installed as cluster heads. That means, in prac-
tice, that the CCA algorithm is the most feasible, compared
with the previous ones.
This complex network strategy is important in WSNs be-

cause, when the tree based routing is built over this physical
topology, a high cluster coefficient avoids the data delivery
delay and unnecessary energy consumption by concentrating
the data sensing in a given cluster head. Interferences and
link layer processing are avoided when two radios with differ-
ent communication frequencies are used in the cluster heads.
Again, when the tree based routing is built over this phys-
ical topology, the low average shortest path length avoids,
mainly, the data delivery delay but more “local” energy is
consumed, because the extra radio has its communication
frequency increased. This discussion shows the truthfulness
of the Main hypothesis presented in Section 2.
The coevolutionary model developed in this paper is an

important step towards a parallel implementation and even
a distributed algorithm for the design of WSNs, which rep-
resent important steps in future work.
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