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ABSTRACT
This work proposes a test function to study overlapping.
The test function provides full controllability over overlap-
ping. To achieve full controllability, the building block as-
signing problem is reduced to a bipartite matching problem
which allow us to directly assign extent of overlapping to
each gene. At the end, an experiment on overlapping shows
that to four chosen crossover methods, the problem difficulty
increases exponentially with the extent of overlapping.

Categories and Subject Descriptors
G.1.6 [NUMERICAL ANALYSIS]: Optimization—Global
optimization, unconstrained optimization

General Terms
Design, Experimentation

Keywords
Genetic algorithm, building block, overlap, test function

1. NOTATIONS
A chromosome C of length l is represented as a series of

genes, C= g1g2...gi...gl, where the subscripts are the index
of gene. The fitness of C is defined as f(C) =

∑m
i=1 fi(Gi),

where m is the total number of sub-problems, or building
blocks (BBs), fi is the fitness function of ith sub-problem,
and Gi is an ordered set of genes related with fi. A prob-
lem is said to be with overlaps if a gene belongs to two or
more sub-problems. We define ω as the number of BBs a
gene belongs to and ω̄ as the average of ω of all genes in a
chromosome.

2. TSUJI ET AL.S’ TEST FUNCTION AND
ITS INSUFFICIENCIES

Tsuji et al. [1] proposed the first practical test function
with controllable extent of overlaps. The ordered set of
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genes related to a sub-problem, Gi, is defined as: Gi =
(N(3i, σ2)mod l, N(3i, σ2)mod l, ..., N(3i, σ2)mod l), where
N(μ, σ2) is the normal distribution with mean μ and vari-
ance σ2. A gene cannot be in Gj more than once. Both σ
and μ can control the test function. As the definitions in
Section 1, ω̄ = k

μ
.

Although Tsuji et al.’s test function provides adjust-ability
of ω̄, because it decides problem structure by sampling a
distribution, it lacks the ability to assign ω to each gene or
even to construct a homogeneous overlapping problem struc-
ture, where ω of every gene is almost the same. Even when
σ → ∞, homogeneity is not guaranteed. When experiment-
ing on overlapping, Tsuji et al.’s test function is good but
not good enough.

3. PROPOSED TEST FUNCTION
A useful test function for overlapping experiments requires

not only controllability over ω̄ but also the ability to con-
struct a homogeneous problem structure, where all ωs of all
genes are almost the same. Various set of ωs, or heterogene-
ity in problem structure, makes the difficulty of a problem
hard to expect. If those unexpected overlaps are not noticed
and handled well, experiments on those heterogeneous prob-
lems will be hard. We propose a test function which allows
us to assign ω to every gene and still keeps randomness of
the problem structure.

3.1 Full controllability over overlapping
A test function with full controllability over overlapping

is proposed. Full controllability means we can directly as-
sign ω to each gene. It provides not only intuitive control
of overlapping but also the ability to construct a homoge-
neous overlapping structure. To achieve full controllability,
the building block assigning problem is reduced to a bipar-
tite matching problem. By setting parameters, expected
overlapping structures are constructed. Bipartite matching
problem can be easily solved by finding maximal flow. The
procedure to create a heterogeneous structure is trivial so
is omitted. We introduce the procedure to construct a ho-
mogeneous problem structure, where all ωs of all genes are
almost the same. Suppose every BB contains k ∈ N − {0}
different genes, and the chromosome length is l ∈ N − {0}.
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Figure 1: The flow graph of l = 6, k = 3, ωDesired = 2.5.
Six nodes represent genes, and floor( lωDesired

k
) = 5

nodes represent BBs. All edges from source to BBs
have capacity equal to k = 3. Edge from all BBs to
all genes have capacity = 1.

The desired ω of each gene is ωDesired ∈ R, ωDesired ≥ 1. All
k, l, ωDesired are given. The size of a BB, m, is set to be floor
of lωDesired

k
. When difference between any two flow from

genes to the target is at most 1, homogeneity is achieved.
To ensure homogeneity, difference between any two capac-
ities from genes to the target is at most 1, and the total
capacities from genes to the target should be equal to max-
imal flow; that is mk = lω̄. The capacities of edges from
mk mod l genes to the target are set at ceiling of mk

l
, and

others are set at floor of mk
l
. The capacity of minimal cut,

ml, should be larger than mk to ensure every BB is fully as-
signed. An example of l = 6, k = 3, ωdesired = 2.5 is shown
in Figure 1.

When maximal flow is achieved, ωi of all genes are either
ωDesired or ωDesired − 1. Homogeneity is achieved. Be-
cause of multiple solutions of maximal flow, randomness is
kept. Figure 2 shows statistics of 1000 different construc-
tions. It shows that the average ω of all genes is always
close to ωDesired. The number of BBs a BB overlaps is also
drawn, which shows there still exist randomness in the struc-
tures. Therefore, the proposed test function can construct
a homogeneous structure without loss of randomness.
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Figure 2: This figure shows the relationship between
ωDesired and ω̄ of structures constructed by the pro-
posed test function. Standard deviation is used to
draw error bars. Each point is a result of 1000 dif-
ferent assignments. It shows that ω̄ is always close
to ωDesired, and the maximal difference of ω between
any two genes is 1.

4. EXPERIMENTS ON OVERLAPPING
Without lose of generality, all BBs are trapone

k with k = 5.
With full information of BBs, we compare minCut [Yu2005],
minCut+ [1], and the crossover proposed by Yu et al. [Yu2009],
which we called it strength based sampling, SBS. When in-
formation of BBs is not provided, we use DSMGA with these
crossovers to compare with hBOA. Each point is a result of
5 independent bisections with 10 successive runs to find the
global optimum. The results are shown in Figure 3.

When the information of BBs is given, SBS outperforms
minCut and minCut+. When the information of BBs is
unknown, hBOA performs best. SBS outperforms minCut
and minCut+ only when σ gets larger. Both result show that
the difficulties of problems with overlaps are highly related
to ω. The number of function evaluations, nfe, required to
solve this problem approaches an exponential function of ω
for most of the existing methods.

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

0 1 2 3 4 5

minCut

minCut+

SBS

n
fe

ω
n

fe

ω

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

0 1 2 3 4

minCut

minCut+

SBS

hBOA

Figure 3: Comparison on the proposed test function.
The chromosome length is 30. (a)with perfect BB
information. (b) without perfect BB information.

5. CONCLUSION
This work tries to pave the way for future researches on

overlapping. A test function with full controllability over
overlapping is proposed. By using the proposed test func-
tion, the number of BBs a gene belongs to, or ω, of each
gene can be directly assigned without loss of randomness
of problem structure. Experiments on any desired extent
of overlapping can be implemented, making researches on
overlapping easier. Four crossover methods are compared
on different extent of overlapping. Results show the problem
difficulties to these crossover methods increase exponentially
with the extent of overlapping.
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