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ABSTRACT
Male Japanese tree frogs exhibit a self-organized behavior
for the desynchronization of their calls. This property has
evolved because female frogs are not able to correctly localize
the male frogs when their calls are too close in time. A
model for this behavior has been proposed in the literature.
However, its use in technical applications is, so far, quite
limited.

In this paper we implement the originally proposed model
in sensor networks, with the aim of desynchronizing neigh-
boring nodes as much as possible. Moreover, we propose
extensions of the original model. Experimental results show
that the proposed extensions improve the desynchronization
capabilities of the original model.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—
Distributed Artificial Intelligence

General Terms
Algorithms, performance

Keywords
Sensor networks, Japanese tree frogs, calling behavior

1. INTRODUCTION
Different studies (see, for example, [7]) have shown that

male Japanese tree frogs use their calling to attract females.
Apparently, females of this family of frogs can recognize the
source of the calling in order to determine the current loca-
tion of the corresponding male. A problem arises when two
of these males are too close in space and communicate at the
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same time. In this case females are not able to properly rec-
ognize both calls independently and are, therefore, unable
to detect where the calls came from. For this reason, males
have evolved to desynchronize their sounds in time. They
achieve to uniformly distribute the distance between each
pair of calls, which allows the females to locate the males
they can hear, and to choose one. In fact, this behavior is a
prime example for self-organization in nature.

More recently, Aihara et al. [1] introduced a formal model
based on a set of coupled oscillators each one simulating
the phase change in the calling period of a single frog. As
oscillators are associated to frogs, we will use both terms
in the following with the same meaning. The basic way of
working of this model is graphically illustrated in Figure 1.
The circle represents—in all three graphics—the time frame
between two calls of the same frog (2π), the calling period.
The nodes marked by integer numbers 1 and 2 indicate the
phase of the corresponding frogs, that is, the moment of time
in which they call. Note that the oscillators are not able
to reach perfect anti-phase in a single step. In general, an
indefinite number of steps is needed before reaching the sta-
ble situation corresponding to perfect anti-phase. Moreover,
the difficulty of reaching the optimal configuration tends to
increase with an increasing number of frogs and also with
an increasing degree of interaction between them (note that
two frogs that can not hear each other do not influence each
other).

Technically, the system introduced by Aihara et al. [1]
works as follows. Each oscillator i has a phase θi ∈ [0, 2π]
that changes over time with frequency ωi (where 2π is the
time interval between two calls of the same frog, the calling
period). When the phase reaches 2π, the oscillator fires and
returns to the baseline. In addition, oscillators may be cou-
pled with other oscillators. In case an oscillator j is coupled
to an oscillator i, when oscillator i fires, oscillator j receives
a boost and changes the frequency of firing in the next round
depending on the gap ∆ji ∈ [0, 2π] (see below) between both
oscillators. These changes do not happen instantly upon re-
ceiving the stimulus. The corresponding oscillator rather
waits until it fires. The model can be summarized in the
following equations. First, the behavior of an isolated oscil-
lator i is modelled as follows:

dθi

dt
= ωi (1)
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(a) Fictitious initial situation with two
frogs calling close in time.

1

2

(b) The system after some iterations.
The system has managed to increase
the distance between the calls of the
two frogs.

1

2

(c) Final situation. The two frogs call
in perfect anti-phase.

Figure 1: Graphical illustration of the working of a system of two coupled oscillators. The circle in all three
graphics represents the time frame between two calls of the same frog (2π), the calling period. The nodes
marked by integer numbers 1 and 2 indicate the phase of the corresponding frogs, that is, the moment of
time in which they call. (a) shows a fictitious initial situation. (b) shows the situation after some iterations.
Clearly the system tries to put some distance between the calling of frogs 1 and 2. (c) shows an optimal final
situation in which the frogs (or oscillators) are in perfect anti-phase, that is, their respective calls have the
reached the maximum distance in time (half a circle).

Assuming that oscillators j and i are coupled, the gap be-
tween their (current) phases is defined as:

∆ji = θj − θi (2)

Now, the change in the behavior of oscillator j as influenced
by oscillator i can be described as follows:

dθj

dt
= ωj + g(∆ji) , (3)

where g(·) is the phase shift function which is responsible for
changing the phase of the frogs that are influenced by other
frogs. In [1], the authors suggest the use of the following
phase shift function:

g(x) = −α sin(x) (4)

We say that this system of oscillators is in a stable situ-
ation and in anti-phase when the following two conditions
are satisfied:

∆ij = ∆ji , (5)

g(∆ij) = 0 , (6)

for all i 6= j. The system presented in [1] is able to suc-
cessfully locate two coupled oscillators in perfect anti-phase,
independent of the initial settings of θ1 and θ2. Unfortu-
nately, several problems arise when the number of oscilla-
tors grows. Figure 2 shows two examples for such problems.
Given an undirected graph G = (V, E), henceforth we will
assign one oscillator to each node in the graph. Therefore,
in the following the terms node and oscillator will refer to
the same. We consider that two oscillators are coupled if
and only if their corresponding nodes are connected by an
edge. Depending on the initial phases of the oscillators, for
both topologies shown in Figures 2(a) and 2(d) it is pos-
sible to reach suboptimal desynchronizations (as shown in
Figures 2(b) and 2(e)). The corresponding optimal desyn-
chronizations are shown in Figures 2(c) and 2(f). In [1] the
authors provide analytical results for using three oscillators
and show that there is a high system sensitivity with respect
to the initial phases, which means that only a small subset

of the possible initial settings leads to an optimal distribu-
tion of the θ-values.

The initial model by Aihara et al. [1] was later extended
by Mutazono et al. [6]. They used their extended model
for anti-phase synchronization for the purpose of collision-
free transmission scheduling in sensor networks. In order to
make the system applicable to larger topologies (sensor net-
works may consists of hundreds of nodes), they introduced
weights in order to regulate the coupling between each pair
of oscillators. The resulting phase shift function as intro-
duced in [6] can be described as follows:

δ(x) = min{x, 2π − x} , (7)

g(x) = αsin(x) · e−δ(x) (8)

Thanks to these weights, the system reaches stable situa-
tions more easily, especially when rather small values of α

are used. The authors experimented with topologies of up
to 20 nodes and although the system still showed certain
difficulties to reach stable solutions, the sensitivity to initial
conditions decreased significantly.

Mutazono et al. [6] compared the results of their system to
another mechanism for coupled oscillator desynchronization
proposed in [3]. Note that the mechanism from [3] is not
based on the calling behavior of Japanese tree frogs. The
main difference to frog-inspired systems is the fact that the
phase change of a node is made on the basis of only two
other nodes. The phase values allow to order all the nodes
sequentially from small to large phase values. The nodes
whose phase values are used to change the phase value of
a node are determined as the predecessor and the succes-
sor in this (cyclic) sequence. As shown in [6], both systems
achieve similar results although no extensive experimenta-
tion is made on a broad-enough set of network topologies:
mostly random geometric graphs and hand-made instances
with at most eight nodes were used.

Another extension of the system by Aihara et al. [1] was
introduced in [5]. The changes concern the use of different
weights for the phase shift function and the introduction
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(a) Topology 1

1
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(b) Suboptimal desynchronization of
topology 1 (with 4 different phases)
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(c) Optimal desynchronization of
topology 1 (with 2 different phases)
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(d) Topology 2
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(e) Suboptimal desynchronization of
topology 2 (with 4 different phases)

1, 32, 4

5

(f) Optimal desynchronization of
topology 2 (with three different
phases)

Figure 2: Two examples for graph topologies (graphics (a) and (d)) that may cause problems for the desyn-
chronization as performed by the model proposed in [1]. Graphics (b) and (e) show suboptimal desynchro-
nizations (corresponding to stable attractors of the system) for both topologies. In contrast, graphics (c) and
(f) show optimal desynchronizations.

of a so-called frustration parameter which reduces the cou-
pling between each pair of nodes. The authors show that
their system is able to obtain better solutions than the orig-
inal model for many different topologies as, for example,
k-partite graphs, grids or platonic solids. Moreover, the au-
thors make some interesting observations: (1) the number of
oscillators is not the key factor for achieving desynchroniza-
tion. It is rather the topology which most determines the
problem complexity. (2) the time distance between phases
is not uniformly distributed around the whole period. The
number of nodes firing at each phase strongly affects the
amount of time between the phases.

The rest of the paper is organized as follows. In Section 2
we introduce our implementation of the original model by
Aihara et al. in sensor networks. Moreover, we propose our
extensions of this model. Next, in Section 3 we provide ex-
perimental results concerning the comparison of the original
model with the extended model. Finally, in Section 4 we
present conclusions and an outlook to future work.

2. IMPLEMENTATIONOFTHEORIGINAL
AND THE EXTENDED MODEL IN SEN-
SOR NETWORKS

First we provide the implementation of the original model
by Aihara et al. in sensor networks. In this implementation,
communication rounds are the basic units of time. A com-
munication round corresponds to the calling period (2π) as
known from the models presented in the previous section.
The only difference is that the length of a communication
round is considered to be one time unit. Therefore, the nu-

Algorithm 1 Sensor event of node i

1: θi :=recalculateTheta()
2: sendMessage()
3: clearMessageQueue()

merical length of a communication round is denoted by 1,
instead of 2π. Each sensor node executes exactly one sensor
event in each communication round. The moment in time
when a sensor node i ∈ V executes its sensor event is de-
noted by θi ∈ [0, 1). Note that θi corresponds to the phase
of an oscillator from the model(s) presented in the previous
section. Moreover, a sensor event includes the sending of ex-
actly one message. Therefore, each sensor node i maintains
a message queue Mi for sensor event messages received from
other sensor nodes since the last execution of its own sensor
event. The pseudo-code of a sensor event is shown in Algo-
rithm 1. In the following we give a rough description of the
algorithm. A detailed technical explanation of the functions
of Algorithm 1 will be provided later on.

The working of the algorithm requires an a priori organi-
zation of the sensor network in form of a rooted tree. The
root node of this tree (henceforth also called master node)
will have some additional functionalities in comparison to
the rest of the nodes. Once the tree is available, the master
node runs a protocol to calculate the height of the tree, that
is, the distance in hops (communication rounds) from the
master node to the farthest node in the network. In order
to produce a tree with a low height, the distributed method
for generating spanning trees with minimum diameter as
presented in [2] may be used. Next, the master node trig-
gers the start of the main algorithm by means of a broadcast

617



message. In this message, the height of the tree is commu-
nicated to the rest of the nodes as well. Later on it will be
described how this overlay tree structure is used to calcu-
late the state of convergence which will be used to stop the
algorithm.

As mentioned above, in each communication round, a
node i executes its sensor event at time θi. First, node i will
examine its message queue Mi. If Mi contains more than
one message from the same sender node, all these messages
apart from the last one are deleted. In general, a sensor
event message m ∈ Mi contains only one real number:

m =< thetam > , (9)

where thetam ∈ [0.1) contains the θ-value of the emitter.
Based on the messages in Mi, function recalculateTheta()
recalculates a new value for θi:

θi := θi − αi

X

m∈Mi

sin(2π · (θm − θi))

2π
, (10)

where αi ∈ [0, 1] is a parameter used to control the conver-
gence of the system. In general, the lower the value of αi

the smaller the change applied to θi. Note that the multi-
plication of (θm − θi) with 2π and the division of the result
of the sinus function by 2π is necessary for the transforma-
tion of the length of a calling period from [0, 2π] to [0, 1].
Finally, node i sends the following message m (see function
sendMessage()):

m =< thetam := θi > (11)

To conclude a sensor event, node i deletes all messages from
its queue Mi (see function clearMessageQueue()), that is,
Mi = ∅.

It remains to provide a description of the algorithms’ stop-
ping mechanism. In this context recall the rooted tree that is
generated before the execution of the main algorithm. The
key characteristic of this tree is its height, henceforth re-
ferred to by h. It determines the maximum number of com-
munication rounds necessary for the master node to broad-
cast a message to all other nodes. In turn, it also determines
the maximum number of communication rounds necessary
to pass information from all the nodes to the master node.
The main goal of the tree is to efficiently alert the nodes
about when and how to stop executing the sensor events
for desynchronization. In the following we assume that the
master node knows the size of the network. At each commu-
nication round, each node i must communicate the following
information to its parent node in the tree: (1) a real number
corresponding to the sum of the distances between the old
theta values and the new ones concerning all nodes included
in the subtree rooted at node i, (2) an integer number that
indicates the corresponding communication round. In fact,
these values can easily be added to the body of the sensor
event messages used by our algorithm. In other words, no
additional messages are required.

Note that, for example, in the first communication round
only the leaves of the tree will report the differences between
their old and new theta values to their parents. This is be-
cause the leaves are the only nodes without children. In the
second communication round, the parents of the leaves will
be able to add these values to their own distances between
the old and new theta values from the first communication
round and report the aggregated data to their respective

parents. Given the height h of the tree, it takes h communi-
cation rounds until all the information regarding a specific
communication round has reached the master node. This
means that the sensor nodes must store the differences be-
tween their old and new theta values during h communica-
tion rounds. Once all the necessary information reaches the
master node, it divides the value by the size of the network
and obtains in this way the average change of the theta val-
ues in the corresponding communication round. In case this
average change is below a certain threshold value (in our
case we always used 0.001), the master node broadcasts a
stopping message to all nodes, which terminates the algo-
rithm.

2.1 Model Extensions
As in the original model, in each communication round

a node i executes its sensor event at time θi. However, a
message m ∈ Mi has now the following format:

m =< thetam, relevancem > , (12)

where, as before, thetam ∈ [0.1) contains the θ-value of the
emitter and relevancem is a parameter that depends on the
number of messages received by the emitter during the last
communication round. This parameter controls the weight
that is given by node i to the corresponding message m. In
particular, less weight is given to messages that were emitted
by nodes that are influenced by many other nodes. The in-
tuition for this definition of the weights is that the θ-values
of nodes that are little influenced by other nodes should
converge first. This may facilitate the convergence of the
θ-values of highly-influenced nodes, which in turn may facil-
itate that the system reaches a stable situation, a term which
refers to a situation in which the θ-values do not change any-
more.

Based on the messages in Mi, function recalculateTheta()
recalculates a new value for θi:

θi := θi + αi

X

m∈Mi

relevancem ∗ inc[θm − θi] , (13)

where αi ∈ [0, 1] is, again, a parameter used to control the
convergence of the system. Moreover, inc[·] is a new function
that replaces the phase shift function of Equation 4. This
new function is defined as follows:

inc[x] =



x − 0.5 if x ≥ 0
x + 0.5 if x < 0

(14)

The hope is to achieve a similar, or even better, convergence
behavior with this much simpler function. Finally, node i

sends the following message m (see function sendMessage()):

m =< thetam := θi, relevancem :=
1

|Mi|
> (15)

Note that when Mi = ∅, then relevancem is, of course,
set to 1. As described before, to conclude a sensor event,
node i deletes all messages from its queue Mi (see function
clearMessageQueue()), that is, Mi = ∅.

3. EXPERIMENTS
We applied four versions of the presented algorithm to 12

small sensor network topologies. The four algorithm ver-
sions are defined as follows: (1) The original model, (2) the
original model with the relevance term, (3) the new model
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(f) star-8.gph

Figure 3: Sensor network topologies used in this work.

(that is, using the simplified phase shift function) without
the relevance term, and (4) the new model with the relevance
term. Each of these four algorithm versions was applied 100
times to each of the following 12 sensor network topologies:

• line-2.gph: two connected nodes

• line-3.gph: three connected nodes in a line

• line-10.gph: 10 connected nodes in a line

• cycle-3.gph: three fully connected nodes

• cycle-4.gph: four cyclicly connected nodes

• cycle-10.gph: 10 cyclicly connected nodes

• houseoftriangles-3.gph: see Figure 3(a)

• petersen.gph: see Figure 3(b)

• rectriangle-9.gph: see Figure 3(c)

• spare.gph: see Figure 3(d)

• wheel-8.gph: see Figure 3(e)

• star-8.gph: see Figure 3(f)

The last six of these topologies are shown in Figure 3. Note
that all these topologies must be interpreted as follows. For
each two nodes that are connected by a link we assume that
the corresponding nodes receive the transmissions of each

other. The optimal distribution of the theta values can be
determined easily in each of the above described topologies.
In this context, the theta values are considered to be opti-
mally distributed if they are maximally separated from each
other. For example, in the case of line-2.gph this value is
0.5. Another example concerns spare.gph where this value
is 0.3.

Results are shown in Tables 1 and 2. For each of the
four algorithm versions we indicate for each of the 12 sensor
network topologies the number of times (out of 100 applica-
tions) in which an optimal distribution of the theta values
was reached. Hereby, Table 1 provides these numbers con-
cerning an error margin of 5%, whereas the numbers given
in Table 2 are calculated on the basis of an error margin of
15%. For each algorithm version there are four columns of
numbers. Each of these columns corresponds to a different
value of α.

The results can be interpreted as follows. First, the rel-
evance term seems, unfortunately, rather not useful. Both
the behavior of the original model and the one of the model
with the alternative phase shift function deteriorate when
using the relevance term. Second, the results of the model
with the new phase shift function are—apart from only few
exceptions—better than the results obtained with the origi-
nal model. This applies in particular to more difficult cases
such as spare.gph, wheel-8.gph, and houseoftriangles-3.gph.
Moreover, the results indicate that a rather high setting of
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α, that is α ∈ {0.75, 1.0} seems to be best for both model
versions. The results of Table 2, however, indicate that con-
sistent results are rather achieved with smaller values for α,
that is, α ∈ {0.5, 0.75}. Finally, for the sake of complete-
ness, Table 3 shows the average distances from the optimal
distribution of the theta values.

Finally, it is also interesting to study the average number
of communication rounds needed by the different algorithm
versions before reaching the stopping condition. This infor-
mation is given in Table 4. Note that the model using the
new phase shift function needs significantly less communi-
cation rounds than the system using the original phase shift
function. The faster convergence caused by the new phase
shift function can also be observed graphically in Figure 4.
More specifically, Figures 4(a) and 4(b) show the evolution
of the average distance between the theta values of nodes
connected by a link for graph spare.gph. Hereby, subfigure
(a) presents the behavior of the original model, whereas sub-
figure (b) concerns the behavior of the model using the new
phase shift function. Finally, Figures 4(c) and 4(d) show the
evolution of the four theta values for a representative run.
While subfigure (c) presents this evolution for the original
model, sugfigure (d) concerns the evolution of the theta val-
ues as obtained from the model using the new phase shift
function. Observe that the separation between the theta
values is clearly better in subfigure (d).

4. CONCLUSIONS
In this paper we have implemented a model for the desyn-

chronization of the calling of male Japanese tree frogs in
sensor networks. Moreover, we have proposed possible ex-
tensions of this model concerning the weight that is given
to different sensor nodes (relevance) and also concerning the
phase shift function that is responsible for the desynchro-
nization of the sensor nodes over time. The presented re-
sults have shown that especially the new phase shift function
helps in improving the desynchronization capabilities of the
system, both in quality and speed.

The proposed model may be used in various application
scenarios appearing in sensor networks. First, the model
may be used, for example, for distributed graph coloring. In
fact, in [4] we have made an attempt in this direction. An-
other example concerns TDMA slot assignment for collision-
free transmission.
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Table 1: Success rates (in terms of the number of successful applications out of 100) calculated on the basis
of an error margin of 5%.

Instance
Model using the new phase shift function Original model by Aihara et al.

No relevance Relevance No relevance Relevance
0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

cycle-10.gph 7 65 70 66 0 8 54 68 4 79 72 77 0 3 70 78
cycle-3.gph 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
cycle-4.gph 89 94 98 100 46 81 90 96 100 100 100 100 48 99 98 100

houseoftriangles-3.gph 18 13 9 10 22 30 15 16 0 0 0 0 27 8 1 0
line-10.gph 8 52 100 100 0 6 27 41 14 45 100 100 0 4 25 29
line-2.gph 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100
line-3.gph 99 100 100 100 62 100 100 98 100 99 100 98 41 99 100 97

petersen.gph 8 2 1 0 1 1 5 6 0 0 0 0 2 0 0 0
rectriangle-9.gph 100 100 100 100 76 100 100 100 100 100 100 100 69 95 100 99

spare.gph 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
star-8.gph 99 100 99 100 0 0 0 93 98 97 99 100 0 0 0 84

wheel-8.gph 60 70 66 67 32 23 15 26 16 12 11 7 29 12 10 10
averages 57.333 66.333 70.250 70.250 36.583 45.750 50.500 62.000 52.667 61.000 65.167 65.167 34.583 43.333 50.333 58.083

Table 2: Success rates (in terms of the number of successful applications out of 100) calculated on the basis
of an error margin of 15%.

Instance
Model using the new phase shift function Original model by Aihara et al.

No relevance Relevance No relevance Relevance
0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

cycle-10.gph 55 65 70 66 20 58 54 68 67 79 72 77 29 67 70 78
cycle-3.gph 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
cycle-4.gph 89 94 98 100 65 81 90 96 100 100 100 100 89 99 98 100

houseoftriangles-3.gph 50 37 31 24 68 68 54 56 0 0 0 0 73 32 11 1
line-10.gph 75 100 100 100 20 52 91 100 76 100 100 100 35 66 97 100
line-2.gph 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100
line-3.gph 99 100 100 100 99 100 100 98 100 100 100 98 99 100 100 99

petersen.gph 10 2 1 0 22 10 8 6 0 0 0 0 14 0 0 0
rectriangle-9.gph 100 100 100 100 100 100 100 100 100 100 100 100 93 100 100 100

spare.gph 80 88 90 93 23 2 0 0 0 0 0 0 0 0 0 0
star-8.gph 99 100 100 100 0 100 99 94 98 98 99 100 0 79 97 98

wheel-8.gph 95 98 98 100 80 87 82 87 93 99 100 100 85 49 28 19
averages 79.333 82.000 82.333 81.917 58.083 71.500 73.167 75.417 69.500 73.000 72.583 72.917 59.667 66.000 66.750 66.250

Table 3: Average distance to the optimal distribution of the theta values

Instance
Model using the new phase shift function Original model by Aihara et al.

No relevance Relevance No relevance Relevance
0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

cycle-10.gph 0.055 0.039 0.032 0.035 0.073 0.052 0.051 0.036 0.045 0.026 0.030 0.024 0.063 0.045 0.037 0.027
cycle-3.gph 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
cycle-4.gph 0.032 0.016 0.005 0.000 0.095 0.051 0.027 0.011 0.005 0.001 0.000 0.000 0.039 0.007 0.007 0.001

houseoftriangles-3.gph 0.028 0.032 0.036 0.042 0.022 0.021 0.025 0.024 0.064 0.070 0.070 0.071 0.019 0.032 0.044 0.050
line-10.gph 0.028 0.012 0.006 0.004 0.062 0.035 0.022 0.014 0.028 0.013 0.007 0.004 0.048 0.032 0.021 0.015
line-2.gph 0.002 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.007 0.000 0.000 0.000
line-3.gph 0.006 0.001 0.000 0.000 0.013 0.004 0.002 0.002 0.004 0.002 0.000 0.005 0.015 0.005 0.002 0.002

petersen.gph 0.039 0.044 0.045 0.046 0.035 0.039 0.040 0.041 0.047 0.050 0.050 0.050 0.034 0.046 0.047 0.048
rectriangle-9.gph 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.001 0.000 0.000

spare.gph 0.020 0.019 0.018 0.018 0.029 0.029 0.028 0.027 0.036 0.042 0.045 0.048 0.043 0.053 0.057 0.060
star-8.gph 0.004 0.001 0.001 0.000 0.061 0.025 0.016 0.019 0.006 0.003 0.001 0.000 0.093 0.036 0.019 0.014

wheel-8.gph 0.010 0.009 0.009 0.009 0.016 0.016 0.017 0.016 0.019 0.020 0.020 0.020 0.016 0.022 0.027 0.030
averages 0.019 0.014 0.013 0.013 0.034 0.023 0.019 0.016 0.021 0.019 0.019 0.019 0.032 0.023 0.022 0.021

Table 4: Average number of communication rounds executed before reaching the stopping condition.

Instance
Model using the new phase shift function Original model by Aihara et al.

No relevance Relevance No relevance Relevance
0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

cycle-10.gph 37.230 24.170 15.910 11.470 46.990 35.940 29.490 22.990 45.580 28.260 19.950 15.050 52.640 45.090 34.550 28.940
cycle-3.gph 10.740 6.300 4.680 4.850 17.490 10.860 8.100 6.340 23.020 14.170 10.040 8.670 31.300 20.940 16.460 14.470
cycle-4.gph 13.740 8.060 5.350 2.260 20.190 13.750 10.120 8.000 21.030 11.770 7.740 5.650 31.050 19.420 13.830 11.140

houseoftriangles-3.gph 22.500 13.830 10.290 7.880 34.540 30.340 27.450 23.130 55.210 36.520 23.370 19.060 46.950 51.070 51.380 49.060
line-10.gph 49.460 38.040 30.750 24.330 51.500 53.260 49.550 37.540 51.000 44.050 33.190 27.700 49.580 51.190 47.260 44.360
line-2.gph 8.750 5.350 3.740 2.000 8.520 5.170 3.610 2.000 10.200 6.030 4.400 3.330 9.980 6.050 4.450 3.330
line-3.gph 12.840 7.600 5.130 2.490 19.960 13.160 9.360 7.190 16.320 9.600 6.920 4.740 24.810 14.550 11.490 8.850

petersen.gph 18.430 10.910 7.860 6.690 34.230 23.690 18.550 15.040 33.290 24.430 19.820 19.480 48.520 38.320 33.030 29.530
rectriangle-9.gph 30.180 18.440 14.280 9.910 32.340 35.350 36.010 32.930 41.210 37.310 27.560 25.270 32.190 25.950 27.900 29.500

spare.gph 12.150 7.540 5.480 5.090 23.410 15.290 11.840 10.090 26.780 19.120 16.910 14.640 43.780 33.390 26.980 23.230
star-8.gph 16.240 9.060 5.920 3.090 55.230 41.250 32.030 25.340 22.360 12.990 9.170 7.110 63.430 57.220 43.260 36.430

wheel-8.gph 18.040 10.730 8.110 6.920 37.740 30.200 26.200 21.330 51.910 37.710 29.130 20.250 48.780 50.020 43.990 39.850
averages 20.858 13.336 9.792 7.248 31.845 25.688 21.859 17.660 33.159 23.497 17.350 14.246 40.251 34.434 29.548 26.558
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(a) Original model by Aihara et al.
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(b) Model using the new phase shift function
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(c) Original model by Aihara et al.
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(d) Model using the new phase shift function

Figure 4: Experimental results concerning topology spare.gph. (a) and (b) show the evolution of the average
distance between the theta values of connected nodes. While (a) refers to the original model, (b) concerns
the model using the new phase shift function. (c) and (d) show—for a representative run of the system—the
evolution of the four theta values. The graphic in (c) represents the behavior of the original model, while
(d) shows the behavior of the model using the new phase shift function.
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