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ABSTRACT

Feature selection in high-dimensional data sets is an open
problem with no universal satisfactory method available. In
this paper we discuss the requirements for such a method
with respect to the various aspects of feature importance and
explore them using regression random forests and symbolic
regression. We study ‘conventional’ feature selection with
both methods on several test problems and a case study,
compare the results, and identify the conceptual differences
in generated feature importances.

We demonstrate that random forests might overlook
important variables (significantly related to the response)
for various reasons, while symbolic regression identifies all
important variables if models of sufficient quality are found.
We explain the results by the fact that variable importances
obtained by these methods have different semantics.

Categories and Subject Descriptors

I.6.4 [Simulation and Modeling]: Model Validation and
Analysis; I.6.5 [Simulation and Modeling]: Model Devel-
opment; I.1.2 [Symbolic and Algebraic Manipulation]:
Algorithms

General Terms

Algorithms, Experimentation

Keywords

Feature Selection, Variable Selection, Variable Importance,
Random Forests, Symbolic Regression, Genetic Program-
ming
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1. INTRODUCTION
Input-response datasets with a large number of variables

are now more than ever a great challenge to analyze and
model. Variable or feature selection algorithms are designed
to reduce the number of variables in a meaningful way (see
[8] for a general discussion). Variable selection is necessary
since irrelevant or noisy variables can be detrimental for
model accuracy, comprehensibility, and robustness, and
hence can jeopardize project success and mislead system
understanding. Feature selection has been studied across
disciplines using different techniques [17, 9, 20, 16, 25, 1]
and efforts are made to consolidate this knowledge [24].

While many different methods are available, few are
accessible. In addition it is not straightforward to com-
pare results obtained with different methods because they
express different concepts of importance depending on the
assumptions made by the method. Different interpretations
of importance hamper the adoption of new feature selection
methods since users need to fully understand a method
to use it with confidence. The absence of a conventional
definition of relevance and importance motivated us to
explore and understand the necessary characteristics of a
good method of assigning importances to data variables.

In our definition, something is important if its presence
or absence matters. So, an input variable is important if its
presence of absence matters in system understanding, i.e.
in understanding of the behavior of the response variables.
Importance of a variable can only be accessed from a
plausible, accurate and insightful model - the functional
relationship between the inputs and the response. An input
variable is not important if it does not cause a change in the
response, i.e. the partial derivative of the model over this
variable (if it exists) is zero across the entire input space.

The problem is that unless input-response models are
given analytically as continuous differentiable functions, the
sensitivity analysis must be performed by manual explo-
ration of the response’s behavior with little if any quan-
tification of importance.

In search for a good general-purpose method of measuring
the importance of variables we want such a method to have
the following properties:

• Interpretability–Obtained importances should re-
flect the importances of the true input variables,
without transformation.
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• Strictness–Only variables relevant to describing the
response should be allocated importance, so spurious
variables should not appear important.

• Conservativeness–At intermediate stages of impor-
tance analysis all potentially interesting variables should
receive importance.

• Reproducibility–A result can only be considered
correct if it is reproducible.

• Universality–It is desirable for importances to be
mutually comparable, and in addition to be problem
independent.

In general variable selection algorithms come in three
varieties: filter, wrapper and embedded methods [8]. A
filter method will not build any models, but only use the
characteristics of the data, while a wrapper method will
estimate variable importance based on model evaluation.
The embedded method incorporates the feature selection in
the model building process, such that variable importances
are guiding the modeling process. Filter methods can be
used as preprocessing to remove some spurious variables, but
we argue that variable importances can not be assessed since
no models are built. Hence a filter method can not estimate
the impact of a variable’s absence. Wrapper methods are by
definition constrained by the model they operate on, because
such methods handle the model as a black box simulation.
Embedded methods are beneficial since models are built
with partial knowledge of variable importance.

In this paper we examine two embedded techniques, re-
gression random forests and symbolic regression via genetic
programming, which are two commonly used methods for
variable selection in high-dimensional real-life data. The
variable selection strategy in both methods is based on
the quantifiable variable importances induced by the input-
response regression models. These importance values are
scrutinized for both methods with respect to properties
described above and we conclude that they are conceptually
different and should not be used in a one-to-one comparison
of an importance (relevance) of any given feature.

The rest of the paper is organized as follows: First
we present the modeling methods from an algorithmic
standpoint. Next we elaborate on the interpretations of
variable importance obtained by those methods. This is
illustrated the differences by several experiments and a case
study. Lastly the conclusions are summarized and future
work is outlined.

2. MODELINGMETHODS

2.1 Random Forests
The Random Forest (RF) technique was introduced by

Breiman [3] as an ensemble of binary decision trees. An
accessible treatment is also provided in [18].

A forest is an ensemble of weak learners constructed
such that every tree will independently divide the dataset
into a training and test set, a technique also known as
bagging (see [2]). The training set is referred to as in-
bag, and the test set as out-of-bag (OOB). The training
set can be sampled with replacement from the full dataset
so the same point occur multiple times in a training set.
A tree built from such data will be biased in the region of

points with multiple occurrences. Even though it degrades
the individual predictions, the prediction of the forest will
benefit [2].

The training set is then recursively partitioned according
to an information gain criterion, until a partition is suf-
ficiently small or no information is gained by partitioning
further. The last partition in such a series is called a leaf or
terminal node.

Algorithm 1 Constructing a Random Forest

for Number of Trees in Forest do

Divide dataset into TrainingSet and TestSet
PartitionList ← TrainingSet
while PartitionList is not empty do

PartitionList → Current
if |Current| > LeafSize then

Left, Right ← BestSplit( Current )
PartitionList ← Left, Right

At each step of the construction of a regression tree a
partition is split in two smaller partitions by introducing
a decision threshold on a variable, represented by a node.
Data points with a value higher than the decision value for
that variable will be grouped together, as are the data points
with a value less than the decision variable. Candidate
variables on which to split are determined by choosing a
random subset out of all variables. Exhaustive search for the
variable providing the highest information gain is performed
on all these candidates and that variable is chosen to be the
decision variable.

The prediction of a tree is determined by checking the
decision value of the tree starting in the root node. Every
next node to consider is the node to which the input point
would be assigned during partitioning. This effectively
creates a path from the root node to a leaf node. The
prediction of a tree for any input point is the average of the
responses of the training points in the leaf node reached by
following such path. The prediction of a forest is the average
of all tree predictions. Note that the predicted response of
a tree is a multidimensional step function, see Figure 1.

2.2 Symbolic Regression
Symbolic Regression (SR) aims to capture the input-

response behavior of the data with an algebraic expres-
sion. No assumptions are made about the model struc-
ture. Clearly, there exists an infinite number of possible
expressions with all input parameters thus an exhaustive
search is not a realistic approach. Instead SR uses genetic
programming (GP) optionally complemented by other meth-
ods [15] to search the model space efficiently. In addition
each iteration of symbolic regression explores a large set
of models, frequently called a population. Each model is
described as an expression tree. Ensemble-based SR uses
an ensemble of models as a final solution. Note, that SR
ensembles are collections of individually strong predictors
in contrast to RF.

At every iteration the fitness of all individuals is assessed
using criteria related to the prediction error. A new
population is then generated by recombining and modifying
these individuals through crossover and mutation. Crossover
is the process of combining two parent individuals into two
new child individuals, by using subtrees of both parents.
Mutating an individual introduces random alterations in its
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Algorithm 2 A simple Symbolic Regression algorithm.

Initialize CurrentPopulation
for Number of iterations do

Determine fitness of all individuals
for Size( CurrentPopulation ) do

NewPopulation ← Empty
Parent1 ← SelectParent( CurrentPopulation )
if rand() < CrossRate then

Parent2 ← SelectParent( CurrentPopulation )
Child ← CrossOver( Parent1, Parent2 )

else

Child ← Mutate( Parent1 )
NewPopulation ← Child

CurrentPopulation ← NewPopulation

expression tree. The rate at which crossover and mutation
occurs is instrumental in the convergence rate to good
solutions. Using only crossover prevents the population from
finding new good combinations since diversity is lost and
some crucial operator or variable might be absent. On the
other hand with too much mutation the search process is
a more random exploration and the convergence rate will
suffer as well. Satisfactory results were obtained using 90%
crossover, 10% mutation rate.

Several enhancements to the described algorithm exist.
We used Pareto-aware Symbolic Regression, or SR via
Pareto genetic programming [22, 19]. This method uses
additional objectives for model selection.

A complexity measure favoring simple models is assigned
to each individual and the model building process is then
redefined as the optimization of two (or more) objectives:
the predictive power of the individuals and their simplicity.
Note that there are multiple solutions since neither objective
is strictly preferred, and all Pareto optimal solutions are
considered. A solution is Pareto optimal with respect
to other solutions if none of those alternative solutions
improve at least one objective while not reducing any other
objective’s performance.

Pareto-aware Symbolic Regression is implemented in [4]
which incorporates several additional enhancements, most
notable elitism and niching. If all individuals are recombined
into a new population, good solutions might be lost which
is clearly undesirable. Elitism counters this by maintaining
an archive, which is a set of current best models according
to the Pareto optimality. An alternative niching strategy
in a space of selected objectives can also be used. Quality
preservation (elitism) is instrumental in the parent selection
since it can be expected that the probability to create a child
with good fitness is higher with an elite solution as parent.
Niching is instrumental to preserve the population diversity.

2.3 Prediction
It is clear that RF and SR have a different model

structure, affecting the prediction of created models.
Figure 1 shows that the prediction from a decision tree

results in a stepwise function, yet a forest can approximate
smooth functions by combining trees. More trees yield
smoother results in general, however the diversity within the
ensemble is important as well for the predictive capabilities
of the forest [5]. It is also noted that data points grouped in
a leaf can be considered ‘close’ together, and the prediction
resembles nearest neighbors, a notion formalized in [13].
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Figure 1: The blue function is sampled at the dots. The red
line is a single tree’s prediction, while the green line is the
prediction of a forest of 50 trees.

x
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Figure 2: Response curves of models found by SR fitting the
two points.

Symbolic regression provides multiple models. The use of
model ensembles as the final solution is advisable to improve
robustness. The model disagreement can be used to estimate
a confidence in the ensemble prediction (see Figure 2).

3. VARIABLE IMPORTANCE

3.1 Random Forests
In RF the variable importance is determined by the

change in prediction error when records are permuted. Each
out-of-bag (OOB) datapoint is evaluated using the value
of that variable from another OOB point in the dataset,
the resulting point is called a perturbed datapoint. The
reasoning is that important variables are split more often,
influencing the prediction more than irrelevant variables. So
a variable contributing to the prediction, will affect the new
path through the tree of a perturbed datapoint such that it
is more probable to end up in a leaf further away from its
original leaf as the importance of the variable increases. The
importance of a variable can then be defined as the average
percentage of change in prediction error per tree. Note this
definition is interpretable as defined in the Introduction.
Note that other yet similar techniques are proposed as well
in [12]. In classification problems it has been shown that the
variable importance is biased towards variables with many
categories [21], so caution is advised when mixing categorical
and continuous variables. In [6] different strategies are
proposed for selecting variables either for explanation or
prediction. A comprehensive comparison of linear regression
and random forests is presented in [7].
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It could be argued that variable importance according
to RF is a pure wrapper method since it relies on model
evaluation. However, the forest prediction is not used,
instead each tree contributes individually. This could be
weighted by the individual tree prediction accuracy, but
this is not a default strategy. Also note that the variable
importance will closely reflect the choices made at the
splitting phase of the algorithm, so labeling this method
as embedded seems more appropriate.

3.2 Symbolic Regression
In SR the variable presence indicates whether a variable is

potentially important. Irrelevant variables will account for
extra complexity but do not provide additional predictive
power. Clearly individuals incorporating them will perform
worse by Pareto optimality than individuals using only
relevant variables. This will in turn lower the chance of being
chosen to produce children, so the presence of irrelevant
variables is discouraged. Therefore the presence of a variable
in a sufficiently evolved population will provide an indication
on whether that variable is relevant for describing the
response. This is also an interpretable measure as defined in
the Introduction.

Presence-weighted and fitness-weighted variable impor-
tance are described as defined in [23].

The presence-weighted variable importance for variable
xi, i = 1, ..., d in a set of models M = {Mj , j = 1, ..., m} is
computed as a fraction of the models containing xi. Such
definition provides a robust estimation of relevance if setM
is of high quality and sufficiently diverse, i.e. obtained using
several independent runs.

The fitness-weighted variable importance eliminates the
need for high quality inM (but does not eliminate the need
for diversity) by weighting the presence indicator with the
fitness of each model:

I
(FW )
i (M) =

m∑

j=1

fitness(Mj)∑d

i=1 δ(xi,Mj)
δ(xi,Mj) (1)

Note that in the extreme case of a population of perfect
models, the fitness-weighted variable importance is equiv-
alent with the presence-weighted variable importance. In
this paper we use the normalized fitness-weighted variable
importances as defined by:

I
(NFW )
i (M̃) =

I
(FW )
i (M̃)

∑d

i=1 I
(FW )
i (M̃)

∗ 100% (2)

3.3 Experimental Comparison
Applying both RF and SR to a few test datasets highlight

some potential problems with respect to variable impor-
tance. For both RF and SR several independent runs were
conducted to ensure results are not significantly influenced
by the random seed of either algorithm. The same dataset
is used for both algorithms, and variables are uniformly
sampled between zero and one unless stated otherwise.

In all RF runs a forest of 1000 trees was built, considering
variable subsets of the default |variables|/3 size to determine
the best split. For RF the median importance is plotted
without confidence intervals for visual presentation.

For SR the variable importance is computed on all
models obtained from the independent runs, and models
were of sufficient quality for the variable importance to be
representative. Accuracy was defined as 1 − R2 where R2

is the square of the scaled correlation between prediction
and response. The number of subtrees in an expression was
used as complexity measure. Model age was used as the
secondary complexity measure.

The colors used on bar plots are for visual presentation
only, and convey no further information.
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Figure 3: The normalized coefficients of the generating
function from Eq. 3.

3.3.1 Linear Model with Spurious Variables

When presented with a large dataset, is is common that
most of the variables are redundant and one typically wishes
to remove them. Here the methods are tested for strictness,
as defined in the Introduction. The generating function is
given by Eq. 3.

y = 10x1 + 10x2 + 5x3 + 1x4 + 0x5 + ...+ 0x10 (3)

Variable importances are expected to correspond to the
normalized coefficients, as illustrated in Figure 3. The
method by which RF computes the variable importance
could capture the same relation, and results are shown in
Figure 4. Remarkable is that the x4 variable’s importance
is underestimated. This suggests that RF is strict but not
conservative.

Because the discussed variable importance for SR only
reflects a variable’s presence, even though fitness-weighted,
it is expected that the relative importances will not be well
preserved. As can be seen from the results in Figure 7 the
variable importance of both x3 and x4 is overestimated. This
more conservative behavior safeguards against removing
relevant variables, but might cloud the relative importances.

We observed that both methods are not sensitive to the
addition of more variables with zero coefficient.

3.3.2 Unbalanced Data

In real problems the available data might not be well
distributed over the input space. This situation is mimicked
by oversampling a variable such that its distribution is no
longer uniform, here variable x1 is sampled much denser in
the interval [0, .1]. The generating function is given by Eq.3.

The result obtained with RF is shown in Figure 5. Ob-
serve that the importance of variable x1 is underestimated
by a large margin. In this case a perturbed datapoint will
most likely be assigned a value from the dense area, were
little change can be observed. These findings agree that RF
is not conservative.

This is in contrast with the findings from SR, presented
in Figure 8. Observe that in this example the unbalanced
dataset does not change the variable importances of SR sig-
nificantly. Since SR builds global models and the underlying
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model is unchanged, the local difference in density will only
slightly influence the variable presence.

3.3.3 Correlated Variables

Frequently not all variables in a dataset are independent,
and input variables are correlated. Such dataset was created
by adding new variables related to a true variable. In this
experiment variables xi for i = 1, ..., 10 satisfy Eq. 3, while
variables xj for j = 11, ..., 20 are constructed by

xj = 0.9 ∗ x1 + 0.1 ∗Noise, (4)

where Noise is uniformly distributed in [0,1].
In RF the variable importances change dramatically as

illustrated in Figure 6. Because correlated variables provide
splits of comparable quality, the true variable effectively
loses splits to a variable it is correlated with, even though
this correlated variable might have coefficient zero in the
generating function. This causes the true variable to lose
influence over the prediction path through the tree, and
consequently its variable importance will be lower. These
findings support the notion that RF is not conservative.
Other research found that relevant correlated variables are
overestimated and propose a conditional variable impor-
tance which greatly improves this behavior [20].

The best models obtained with SR do not contain the
correlated noise variables. But since those correlated
variables can still serve as a surrogate for the true variable
to build rough approximations, they will remain active in
the population. Consequently SR will always allocate some
importance to the noise variables, as can be observed in
Figure 9.

3.3.4 Relatively Weak Variables

Here we examine how both methods deal with variables
which are considerably less important than others, yet not
redundant. This test verifies whether the methods are
conservative, as defined in the Introduction. The generating
function is given by Eq. 5.

y = 10x1 + 10x2...10x8 + 1x9 + 0x10 (5)

Random forests produces the variable importance shown
in Figure 11. It is observed that the variable with rela-
tively low coefficient (x9) has an importance close to zero,
supporting the observation that RF is not conservative. In
addition the relative importance of the variables x1 through
x8 vary considerably, implying that RF is not universal.
Since most variables are of equal importance neither will
consistently provide a better split than its peers, but still
always better than the variable with a low coefficient. The
potential splits on the equally important variables differ only
slightly according to the splitting criterion. They will reflect
the distribution of the input variables which might exhibit
slight non-uniformities due to the limited sample size. The
splitting criterion amplifies these slight variations in density.

The same situation is better handled in SR, of which
results are shown in Figure 12. While the importances are
not exactly the same, this is expected since the population
can still yield suboptimal models causing a small variation
in the importances, even though the variables have equal
coefficients.

Observe that the importance of a variable with lower
coefficient is overestimated. In the specific case that many
significant variables’ contribution is approximately equal,

Latent Variable Symbolic Regression (LVSR) performs bet-
ter than SR with respect to strictness as defined in the
introduction (see [14]).

4. CASE STUDY
Human development is an important and interesting

subject, more so because it concerns every human on
the planet. Many social, economical and personal factors
are combined in a single number known as the Human
Development Index (HDI) [10]. This index is an indicator
expressing the general quality of life of the human popula-
tion but not limited to material well-being. It uses three
dimensions of development: health, knowledge, income.
Health is measured by life expectancy at birth. Knowledge
is measured by combining the expected years of schooling
for a school-age child in a country today with the mean
years of prior schooling for adults aged 25 and older. Income
is measured in purchasing power adjusted per capita gross
national income. These three dimensions are then combined
using the geometric mean.

The HDI is not perfect, but the data collected in the
process surely holds information and is subject of active
research [11].

In this case study we compare the variable importances
obtained by RF and SR, when estimating several parameters
from the HDI dataset. The initial dataset is available at [10]
and contains many missing values.

While RF can produce a proximity matrix by which
missing values could be filled in, it seemed prudent to
pre-process the dataset independent of the methods to be
compared. The dataset was pre-processed as follows: If
a value was missing for a specific variable in more than
50 countries, the variable was removed. If a country had
more than 30 missing values on the remaining variables, the
country was removed. The remaining missing values were
replaced by the average value over countries within the same
development group (low, medium, high, very high developed
country). In addition the variable ‘Antenatal Care’ was
removed because no data was available for any country in
the very high developed group.

The variables ‘Total Satisfaction Freedom of Choice’,
‘Total Purposeful Life’ are modeled because any relation-
ship between the development of a country and perceived
freedom and purpose would be interesting. For both these
variables data was collected through questionnaires were
participants were asked whether they were satisfied with
their freedom of choice, or whether they find their lives
purposeful, respectively. The percentage of the population
who answers ‘yes’ to either question is the response variable.
Note that the dataset provides both a total percentage and
a percentage for the female population to make comparison
across genders possible. Only the total percentage is
modeled and the female percentage is removed a priori, since
this variable holds exactly the same information defeating
the purpose of modeling.

The GDP per Capita was also modeled to compare both
techniques on a non-linear problem. The Gross Domestic
Product (GDP) is the value of all products and services
produced within a country in a year. This is typically
divided by the population to make international comparison
possible, considering that more people are able to produce
more value. While the explicit formula is known in this case
and the true variables GDP and population are present in
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Figure 4: Variable importances ac-
cording to RF, using a uniformly
sampled dataset from the generating
function given by Eq. 3.
Note the underestimated importances
of variables x3 and x4.
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Figure 5: Variable importances ac-
cording to RF, where the dataset
sampled from the generating function
given by Eq. 3 is unbalanced in
x1. Note the gross underestimation
of variable x1.
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Figure 6: Variable importances ac-
cording to RF, using a dataset from
Section 3.3.3. The true variable
x1 is grossly underestimated and
furthermore indistinguishable from
variables it is correlated with.
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Figure 7: Variable importances ac-
cording to SR, using a uniformly
sampled dataset from the generating
function given by Eq. 3.
Note the overestimated importances
of variables x3 and x4.
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Figure 8: Variable importances ac-
cording to SR, where the dataset
sampled from the generating function
given by Eq. 3 is unbalanced in x1.
The importances are still comparable
with the unbalanced dataset (Fig. 7).
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Figure 9: Variable importances ac-
cording to SR, using a dataset from
Section 3.3.3. Importances of the true
variables remain comparable to those
in Fig. 7, but extra variables have a
non-neglectable importance.

the dataset, the difficulty lies in extracting the two relevant
variables from the many irrelevant but correlated variables.
The variable ‘GNI per Capita’ is removed a priori, this
variable by itself approximates GDP per Capita.

4.1 Purposeful Life
The relation between country development and Purpose-

ful Life is illustrated in Figure 13. Note that countries with a
higher HDI exhibit a larger variance in the Purposeful Life.

Importances obtained by SR displayed in Figure 19,
models of good quality showed a linear relation between vari-
ables. The SR variable importances suggest that the most
important variables determining whether life is perceived
as purposeful are: Hospital Beds, Fertility, Age, Maternity
Leave, Undernourishment. We roughly relate these variables
to health, children and food. We find these factors not
unreasonable in order to enjoy a purposeful life.

Importances obtained by RF are shown in Figure 16. Ob-
serve that only the most important variables are similar to
those identified by SR, and variables with lower importances
are incomparable. Since the underlying model was suggested
to be linear by SR the observations made in the experiments
from the previous section are applicable.

4.2 Freedom of Choice
The relation between Freedom of Choice Satisfaction and

country development is presented in Figure 14. While the
higher developed countries score higher, a large variance is
observed.

Importances obtained by SR are shown in Figure 20,
models of good quality showed a linear relation between
variables. The SR variable importances suggest that the
most important variables determining the satisfaction with
ones freedom of choice are: Standard of Living Satisfaction,
Healthcare Satisfaction, Respect, Employment, Air and

Water Quality. So this one satisfaction variable aggregates
information of different aspects in life. We find these variable
importances intuitively plausible.

Importances obtained by RF are visualized in Figure 17.
Again the most important variables agree with those found
by SR with variations in relative importance, but variables
with lower importances are different. For example the
Income Gini Coefficient has a relatively high importance
score, while this variable is not present at all in the top
20 important variables obtained with SR. In the absence
of domain expertise this can have a significant impact on
a decision making process. This illustrates that caution is
warranted when performing variable selection, and consult-
ing multiple methods is advised.

4.3 GDP per Capita
The relation between GDP per Capita and country devel-

opment is shown in Figure 15.
Importances obtained by SR are presented in Figure 21.

While neither GDP nor Population scores high in impor-
tance, it is noted that the explicit formula GDP/Population
was retrieved in a few models. But since the majority of
the population achieved a much lower level of quality, they
will obscure these variables even though the importance
is fitness weighted. This is an example of why models of
sufficient quality should be used to estimate importances,
and highlights the consequences of not doing so.

Importances obtained by RF are displayed in Figure 18.
Neither the GDP nor Population variable is present in the
top 20 most important variables, as was the case with SR.
However it is observed that correlated variables dominate
other variables. Many variables with ‘HDI’ in their name
are correlated, and are also correlated with GDP per Capita.
This agrees with findings in other research regarding RF
variable importance with correlated variables [20].
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Figure 10: The normalized coeffi-
cients of the generating function as
defined by Eq. 5. By computing the
variable importances for this linear
problem one can verify whether the
used method is conservative.
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Figure 11: Variables with equal co-
efficient can still vary in importances
obtained by RF. Note variable x9

appears to be irrelevant, while it has a
non zero coefficient in the generating
function given by Eq. 5.
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Figure 12: Variables with equal coeffi-
cient vary in importances obtained by
SR, but do not differ as much as the
importances obtained by RF in Figure
11. The generating function is given
by Eq. 5.
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Figure 13: The HDI plotted versus
Purposeful Life. Countries with a
higher HDI score less on average due
to higher variance in Purposeful Life.
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Figure 14: The HDI plotted ver-
sus Freedom of Choice Satisfaction.
The higher developed countries score
higher. The variance is large.
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Figure 15: The HDI plotted versus
the GDP per Capita, which is closely
related to the IncomeIndex, one of the
three dimensions of the HDI.
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Figure 16: Importances obtained with
RF modeling Purposeful Life.
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Figure 17: Importances obtained with
RF modeling Freedom of Choice.
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Figure 18: Importances obtained with
RF modeling GDP per Capita.
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Figure 19: Importances obtained with
SR modeling Total Purposeful Life.
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Figure 20: Importances obtained with
SR modeling Freedom of Choice.
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Figure 21: Importances obtained with
SR modeling GDP per Capita.
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5. CONCLUSION AND FUTUREWORK
Random forests (RF) can efficiently find important vari-

ables in the presence of many irrelevant variables. When
many variables are equally important the variable impor-
tances vary randomly since such variables are not recognized
as truly distinct. In addition RF might value a variable con-
siderably less than expected, and correlation with spurious
variables amplifies this behavior. Furthermore the variable
importance is influenced by the data distribution, leaving
them prone to misinterpretation. In general, caution is
advised when using RF to decide which variables to retain,
even if the dataset is known not to exhibit strong correlations
or unevenly balanced data. Because data points in leaf nodes
are similar in a nearest neighbor sense, variables selected by
RF express proximity.

Symbolic regression (SR) performs well throughout all
tests. The model building process is ideally a continuous
evolution, and while convergence is assumed, there is little
information available about the speed of convergence or
the proximity to acceptable solutions. A population of
insufficient quality will yield unreliable variable impor-
tances, so model quality must be verified when drawing
conclusions. It remains important to look for robust
algorithmic configurations that ensure the discovery of
models of sufficient pre-defined quality. A more formal
framework to establish the importance of variables given an
expression tree is needed as well.
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