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Estimation of distribution algorithms (EDAs) with the
maximum likelihood method and the full replacement oper-
ator are described as

θt = argmax
θ

∑
Xpt−1

wt(x) log p(x|θ), (1)

t = 1 · · ·T,
where p(x|θ) and Xpt−1 are a probability model with the
parameter θ and the previously generated samples according
to p(x|θt−1), respectively. p(x|θ0) is the initial probability
model, given previously. t and T are the number of iterations
and the termination time, respectively. Different algorithms
are derived from different weight functions w(x).

Three types of w(x) are shown in the following.

w(x) = q̃(x|f̃t), (2)

w(x) =
q̃(x|f̃t)

p(x|θt−1)
, (3)

w(x) =

(
q̃(x|f̃t)

p(x|θt−1)

)λ

, (4)

where

q̃(x|f̃) =
{

1 f(x) < f̃
0 else

.

f(x) is the objective function of the minimization problem.
Function (2) represents the truncation selection and is called

the truncation weight. It is easy to determine f̃t such that

|{x ∈ Xpt−1 | f(x) < f̃t}| ≈ (1− c)|Xpt−1|,
where c is the parameter representing the fraction of the
discarded samples in the generated samples.
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Table 1: The effect of λ.
λ 0 → 1

w(x) truncation → IS
Consistency inconsistent → consistent
Fluctuation small → large

Function (3) is derived from importance sampling (IS) [1]
and is called the IS weight. This work proposes function (4)
as an improvement of the truncation and IS weights, and it
is called the regularized IS weight.

The IS weight provides a consistent estimator of the ex-
pected log-likelihood with respect to qt(x) ∝ q̃(x|f̃t), while
the estimator given by the truncation weight is inconsistent
from the viewpoint of approximating qt(x). Although the-
oretically preferred, the IS weight is less effective in EDAs
than the truncation weight. This is because the IS weight
has larger fluctuation of w(x) than the truncation weight,
and the large fluctuation leads to an increase in the gener-
alization error of the maximum likelihood estimation.

The regularized IS weight is the IS weight raised to the
power of λ. This technique is called IS regularization and λ is
the regularization parameter with the range 0 < λ ≤ 1. The
regularized IS weight is equivalent to the IS weight when
λ = 1. With smaller λ, the fluctuation decreases but the
estimator becomes more inconsistent. The limit of the regu-
larized IS weight as λ approaches 0 is the truncation weight.
The regularized IS weight is a generalization of the IS and
truncation weights. In this work, the truncation weight is
represented by the regularized IS weight with λ = 0. Table
1 summarizes the effect of λ.

The determination method of λ is left as a future work,
but this work provides experimental results to show the ef-
fectiveness of introducing λ. The employed benchmark prob-
lems are the 2D Ising model with the cyclic boundary con-
ditions, the Rastrigin, and the Rosenbrock function. The
employed probability models are the fully factorized ones,
where the univariate distributions of Bernoulli and Gaussian
are employed for discrete and continuous problems, respec-
tively.

In the experiments, the performance with different values
of λ are investigated and the average results of twenty runs
for each value are shown in Figs 1-3. The parameters are
listed in table 2 and their values are shown in the figures
and the captions.

In the six graphs, the horizontal axes represent the value
of λ. The vertical axis of the upper one of Fig. 1 shows
the average function value of the best obtained solutions of
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Table 2: Parameters.
d The dimension of the variable.
M The number of generated samples in one iteration.

c The parameter of the convergence schedule1.
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(a) The function value of the obtained solution.
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(b) The number of function evaluations performed until
convergence.

Figure 1: Results for the 2D Ising model (d = 20×20);
M = 1000.

each run. The vertical axes of the upper ones of Figs. 2-3
show the probability of finding the optimal solution. The
probability is given by the frequency of finding the optimal
solution divided by twenty. In each figure, the vertical axis of
the lower one represents the number of function evaluations
taken until convergence.

The results show that the appropriate values in terms of
the function value are 0.1 ≤ λ ≤ 0.2, 0.03 ≤ λ ≤ 0.07 and
0.28 ≤ λ ≤ 0.73 for Figs. 1-3, respectively. The appropriate
λ can outperform the truncation selection (λ = 0).

This work shows that introducing regularized importance
sampling is a direction of theoretical developments of EDAs.
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1The convergence schedule determines f̃t such that

1− c ≈
∑

Xpt−1

(
q̃(x|f̃t)
pt−1(x)

)λ

∑
Xpt−1

(
q̃(x|f̃t−1)

pt−1(x)

)λ .
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(a) The probability of finding the optimal solution.
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(b) The number of function evaluations performed until
convergence.

Figure 2: Results for Rastrigin Function (d = 10);
c = 0.1, M = 500.
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(a) The probability of finding the optimal solution.
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(b) The number of function evaluations performed until
convergence.

Figure 3: Results for Rosenbrock Function (d = 10);
c = 0.1, M = 500.
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