
Overfitting Detection and Adaptive Covariant Parsimony
Pressure for Symbolic Regression

∗

Gabriel Kronberger
Upper Austria University of

Applied Sciences
Research Center Hagenberg

Softwarepark 11
4232 Hagenberg, Austria

gabriel.kronberger@
fh-hagenberg.at

Michael Kommenda
Upper Austria University of

Applied Sciences
Research Center Hagenberg

Softwarepark 11
4232 Hagenberg, Austria

michael.kommenda@
fh-hagenberg.at

Michael Affenzeller
Upper Austria University of

Applied Sciences
Department of Software

Engineering
Softwarepark 11

4232 Hagenberg, Austria

michael.affenzeller@
fh-hagenberg.at

ABSTRACT

Covariant parsimony pressure is a theoretically motivated
method primarily aimed to control bloat. In this contribu-
tion we describe an adaptive method to control covariant
parsimony pressure that is aimed to reduce overfitting in
symbolic regression. The method is based on the assumption
that overfitting can be reduced by controlling the evolution
of program length. Additionally, we propose an overfitting
detection criterion that is based on the correlation of the
fitness values on the training set and a validation set of all
models in the population.
The proposed method uses covariant parsimony pressure

to decrease the average program length when overfitting oc-
curs and allows an increase of the average program length in
the absence of overfitting. The proposed approach is applied
on two real world datasets. The experimental results show
that the correlation of training and validation fitness can be
used as an indicator for overfitting and that the proposed
method of covariant parsimony pressure adaption alleviates
overfitting in symbolic regression experiments with the two
datasets.

Categories and Subject Descriptors

I.2.2 [Automatic Programming]: Program synthe-
sis; I.2.8 [Problem Solving, Control Methods, and
Search]: Heuristic Methods

General Terms

Algorithms, Experimentation

∗Paper presented at the 3rd Symbolic Regression and Mod-
eling Workshop GECCO 2011

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0690-4/11/07 ...$10.00.

Keywords

Symbolic regression, overfitting, parsimony pressure

1. MOTIVATION
Overfitting is a well-known problem in data-based model-

ing and it has been shown that symbolic regression is also
prone to overfitting [17]. One approach to detect if over-
fitting occurs in symbolic regression is to use an internal
validation set on which all solution candidates are evaluated
additionally to the training set. Instead of returning the
best solution on the training set, a solution with high fit-
ness on the training as well as the validation set is returned
as the final result [5], [21]. This approach can also be ex-
tended to store a set of Pareto optimal solutions regarding
validation fitness and model size in an archive [15], [11]. The
effectiveness of a validation method strongly depends on the
observations contained in the validation partition. Both the
training and validation partition should contain a represen-
tative sample of all possible observations to make it possible
to create a model that is also applicable to new observa-
tions. Thus the choice of training and validation partitions
is crucial for any data-based modeling approach.

Other approaches that are often used to control overfitting
and improve generalization in statistical learning methods
are based either on the estimation of the expected gener-
alization error or on penalization of overly complex models
[6]. The first approach is to tune the algorithm parameters
in iterative steps to find parameter settings which result in
a model that generalizes well using an estimator for the ex-
pected generalization error of the model. The expected gen-
eralization error can be estimated using a hold-out set or
through cross-validation. The second approach is to add a
penalty term to the objective function that should be mini-
mized. The penalty term depends on the model complexity
and optionally on the number of training samples [1], [12],
[10], [18]. This approach integrates directly into the train-
ing algorithm and produces a model with a good balance
between training error and complexity.

A topic that has been discussed intensively and is also re-
lated to overfitting is the bloating effect of genetic program-
ming [17]. Bloat is the growth of program length without
a corresponding improvement in fitness. The most recent
theory explaining the cause of bloat is the crossover bias
theory of bloat [3]. A number of different methods for the

631

prevention or reduction of bloat have been derived from the
crossover bias theory of bloat [9], [13]. One example of a the-
oretically motivated bloat control method is covariant par-
simony pressure [9]. Through covariant parsimony pressure
it is possible to tightly control the dynamics of the average
program length over a genetic programming (GP) run. In
this contribution we take up the idea to dynamically acti-
vate and deactivate parsimony pressure depending on the
state of the algorithm as has already been suggested in [9].
It is generally assumed that bloat and overfitting are re-

lated. However, it has been recently observed that overfit-
ting can occur in absence of bloat, and vice versa. Thus, it
has been suggested that overfitting and bloat are two sep-
arate phenomena in genetic programming [17], [14]. This
suggests that overfitting and bloat should be controlled also
by separate mechanisms. In this contribution we do not dis-
cuss bloat control methods in detail. However, we use the
covariant parsimony pressure method, which was initially
proposed for bloat control, to reduce overfitting, because it
provides a natural method to control average model length
in a GP population.
In this contribution we propose an overfitting detection

criterion for symbolic regression. We use this criterion in
combination with covariant parsimony pressure to control
the average program length. Parsimony pressure is only
applied in the overfitting state to gradually reduce model
length. As long as no overfitting is detected the program
length is allowed to grow.
The aim of the contribution is to present the idea and

first experimental results of the proposed method for the
reduction of overfitting. As stated in the previous sections
there are a number of shortcomings of the approach, that
need to be addressed in further research to make it useful in
practical applications.

2. OVERFITTING DETECTION FOR

SYMBOLIC REGRESSION
Overfitting and thus poor generalization ability can be

detected by evaluating solution candidates on an internal
validation set. For each solution candidate two fitness val-
ues are calculated, namely ftraining and fvalidation. Only the
fitness on the training set is used for selection. The fitness
on the validation set is used to detect the presence of over-
fitting. An indicator for overfitting is that the fitness on
the validation set decreases while the fitness on the training
set increases. An overfitting metric that is based on this
approach is for example given in [17].
In this contribution a different approach to detect overfit-

ting using a validation set is proposed. Instead of observing
the absolute values or relative changes of the validation fit-
ness we calculate the correlation of the fitness on the train-
ing set and the fitness on the validation set over all solution
candidates in a population at generation g.
Intuitively, when no overfitting occurs the validation fit-

ness of solution candidates should be strongly correlated to
the training fitness. Solution candidates with higher train-
ing fitness are more likely to be selected for recombination,
so ideally such solution candidates should also have high val-
idation fitness. Solution candidates that have low training
fitness should also have low validation fitness. If the corre-
lation of training and validation fitness is high the selection
pressure implicitly leads to solutions that have better train-

ing and validation fitness. In contrast if the correlation of
training and validation fitness is low the selection pressure
will lead to solution candidates that are only better on the
training set and the chance to create solutions with lower
validation fitness increases.

This leads to the overfitting detection function shown in
Equation 1. The function indicates that overfitting occurs
when the correlation of training and validation fitness val-
ues of the models in generation g is lower than a certain
threshold. In the experiments we used the non-parametric
Spearman’s rank correlation coefficient ρ(x, y) [16] instead
of Pearson’s product moment correlation coefficient because
we observed that in general the training and validation fit-
ness values do not follow a normal distribution.

Overfitting(g)α =

{

true if ρ(ftraining(g), fvalidation(g)) < α

false otherwise

(1)
It must be noted that the fitness correlation is also small

when the algorithm is in an under-fitting stage, for instance
at the beginning of a symbolic regression run when both
the training and validation fitnesses are low. It is expected
that the algorithm starts initially with poorly fit models and
a low correlation coefficient which should increase over the
first generations. After the algorithm has reached a maxi-
mal correlation coefficient after some generations it is then
possible to detect overfitting by a decrease in the correlation
coefficient.

Instead of calculating the correlation on the whole popu-
lation it is also feasible to calculate it only for a subset of
the population including the models with best training fit-
ness. While models with large training fitness should also
have a large validation fitness value, it can be argued that in
practice it is not necessary that models with small training
fitness should also have a small validation fitness. Addition-
ally, if a lower limit for the fitness value is enforced, many
models have a small training and validation fitness at the be-
ginning of a run. The fitness values of these models should
not be included in the calculation of the correlation coef-
ficient to prevent biasing the result. In this work we use
Pearson’s R2 of the estimated and target values as fitness
function, and subsequently we calculate the correlation co-
efficient over all fitness values larger than zero (i.e. models
producing constant output are excluded).

The correlation-based overfitting detection function indi-
cates already very early when the GP process begins to pro-
duce over-fitted models. So it is possible to react to overfit-
ting in a timely manner for instance by stopping the run or
reducing the model length.

3. OVERFITTING, PROGRAM SIZE, AND

COMPLEXITY
Overfitting can be reduced by reducing the complexity

of solution candidates in the population. In the following
we assume that the complexity of solution candidates can
be simultaneously reduced by reducing the average program
length in the population. This is a notable shortcoming of
the proposed approach, because program length and model
complexity cannot be regarded as equivalent in GP [19], [2],
[17]. Especially, if the function set includes transcendental
functions complexity and program length cannot be related

632

directly (i.e. sin(x) is more complex and more compact than
x ∗ x ∗ ... ∗ x). Therefore, the choice of the function set has
a strong impact on the tendency for overfitting and also
on the applicability of methods controlling program length
to reduce overfitting, including the approach described in
this work. As a consequence, a very limited function set
including only arithmetic functions has been used in the
experiments described later in this work. However, the issue
of the disconnection of program length and complexity is
not completely resolved by this measure. Further research
about the relation of complexity, program length and fitness
is necessary for improving overfitting control strategies. An
important question for further research is if complexity can
also be regarded an inherited trait, and if the evolution of
complexity follows a similar rule as the evolution of program
length.

4. ADAPTIVE CONTROL OF COVARIANT

PARSIMONY PRESSURE
One approach for the control of program length in GP is

the parsimony pressure method. In this approach the se-
lection probability of smaller individuals is increased by ad-
justing the fitness value of solutions to integrate the solution
length weighted with a static parsimony pressure coefficient
c as shown in Equation 2.

fadjusted(x) =f(x)− c ℓ(x) (2)

An extension of this method, namely covariant parsimony
pressure (CPP) [9], dynamically adapts the parsimony pres-
sure coefficient c(t) at iteration t as shown in Equation 3
where ℓ is the program length and f is the raw fitness. The
advantage of this approach is that it is not necessary to tune
the parsimony pressure coefficient manually and it is auto-
matically adapted as the distribution of fitness values and
problem lengths in the population evolves. Through CPP
it is possible to tightly control the average program length
over the whole GP run. Additionally, CPP has strong the-
oretic fundamentals, because it is derived from GP schema
theory.

fadjusted(x) =f(x)− c(t)ℓ(x)

c(t) =
Cov(ℓ, f)

Var(ℓ)
,

(3)

It has already been suggested in [9] to dynamically turn
CPP on and off at specific stages of the GP run. This sugges-
tion is taken up in this work to introduce a novel approach
to reduce overfitting. In combination with the overfitting
detection function described in the previous section, it is
possible to use CPP to gradually decrease the average pro-
gram length to a point where either no overfitting occurs.
This strongly depends on the observations in the training
and validation dataset and it is certainly possible that over-
fitting occurs even for very small models for instance when
the dataset contains many more variables than observations
(k >> N). In such cases the algorithm converges to a popu-
lation of very small models. When the algorithm is back in a
non-overfitting stage parsimony pressure is turned off again.
In this way the evolutionary process can freely increase the
solution complexity to a level that is necessary to solve the

problem and limit the complexity from above as soon as the
process starts to overfit.

Parsimony pressure should be configured in such a way
that the average program length is reduced slowly. If parsi-
mony pressure is applied too strongly there is the risk that
selection probability is solely determined by program length.
This can happen for instance when the average program size
is forced to a level which is a lot smaller than the current
average program size in one generation. This leads to a
situation where the adjusted fitness values are strongly cor-
related to the program length instead of the raw fitness and
the evolutionary process will be mainly driven by the pro-
gram length.

5. EXPERIMENTS
In this section we describe the experiments we have run

to test the effectiveness of the adaptive CPP approach and
the overfitting detection function.

5.1 Datasets
For the experiments we selected two publicly available re-

gression datasets.
The first dataset (Chemical-I) has been prepared and pub-

lished by Arthur Kordon, research leader at the Dow Chem-
ical company for the EvoCompetitions side event of the
EvoStar conference 2010. The dataset stems from a real
industrial process and contains 1066 observations of 58 vari-
ables. The first 747 observations are used for training and
validation and the remaining 319 observations are used as
a test partition. The values of the target variable are noisy
lab measurements of the chemical composition of the prod-
uct which are expensive to measure. The remaining 57 vari-
ables are material flows, pressures, temperatures collected
from the process which can be measured easily. The dataset
can be downloaded from 1.

The second dataset used in our experiments is the Boston
housing dataset from the UCI machine learning repository
[4]. The dataset contains 506 observations of 14 variables
concerning the housing values in the suburbs around Boston.
The first 253 observations are used for training and valida-
tion and the remaining 253 observations are used as a test
partition. The dataset can be downloaded from 2.

5.2 Algorithm Configuration
To test our approach we have executed experiments with

four different variants of tree-based genetic programming
for symbolic regression using both datasets. The first vari-
ant, that we also used as a starting point for the modi-
fied variants, is a rather standard GP configuration (SGP)
with tree-based solution encoding, tournament selection,
sub-tree swapping crossover, and two mutation operators.
The function set contains only arithmetic operators with
two operands (+,-,*,/) and three operands (average). The
terminal set includes all variables and random constants.
Trees are initialized randomly using the probabilistic tree
creator (PTC2) [8] where the terminal type (variable or con-
stant) is chosen randomly with equal probability. Constants
are initialized to a normally distributed random value with

1http://casnew.iti.upv.es/index.php/
evocompetitions/105-symregcompetition
2http://archive.ics.uci.edu/ml/
machine-learning-databases/housing/

633

µ = 1, σ = 1. One-point mutation sets the function symbol
of internal nodes randomly, choosing from all symbols from
the function set with equal probability. If one-point muta-
tion is applied to a terminal node representing a variable,
a new variable symbol is chosen randomly from all possible
symbols with equal probability. If one-point mutation is ap-
plied to a terminal node representing a constant, a normally
distributed random value (µ = 0, sigma = 0.1) is added to
the constant value. The fitness function is the squared cor-
relation coefficient of the model output and the actual values
of target variables. Only the final model is linearly scaled
to match the location and scale of the target variable [7].
The parameter settings for the SGP algorithm are specified
in Table 1.
The second variant is SGP with static constraints for the

program length and depth (SGP+static). The same param-
eter settings specified in Table 1 are used and additionally
the static limit for program length is set to 250 nodes and
the static limit for the program depth is set to 17 levels.
The third variant of the standard algorithm uses covari-

ant parsimony pressure (SGP+CPP). Covariant parsimony
pressure is activated after 10 generations and is configured
to keep the average program length at a constant value in ex-
pectation as shown in Equation 3. No static size constraints
are used in combination with CPP.
The fourth variation of the standard algorithm uses the

training- and validation fitness correlation to detect overfit-
ting and adapts covariant parsimony pressure accordingly
(SGP+AdaptiveCPP). A boolean variable is-overfitting is
introduced which is initially set to false. After each itera-
tion the training- and validation fitness correlation is calcu-
lated and the is-overfitting flag is updated accordingly. To
prevent unstable behavior two threshold values threshlow,
threshhigh are used to toggle the value of the is-overfitting

variable as shown in Algorithm 1. In the experiments we
used threshlow = 0.5, threshhigh = 0.75.

r ← ρ(ftraining(g), fvalidation(g));
if is-overfitting = false ∧ r < threshlow then

is-overfitting ← true;
if is-overfitting = true ∧ r > threshhigh then

is-overfitting ← false;

Algorithm 1: Algorithm for overfitting detection with
lower and upper threshold for the training and validation
fitness correlation.

In SGP+AdaptiveCPP the covariant parsimony pressure
is adapted based on the is-overfitting flag as shown in Equa-
tion 4. When the algorithm is in an overfitting state the
covariant parsimony pressure is adapted to reduce the aver-
age program length by five percent each iteration. In con-
trast, no parsimony pressure is applied in a non-overfitting
state. The evolutionary process can evolve the program
length without constraints in non-overfitting phases.

Parameter Value
Population size 2000
Max. generations 100
Parent selection Tournament, group size = 6
Replacement generational

no elitism
Initialization PTC2 [8]
Max. initial tree size 100
Crossover Sub-tree swapping
Crossover rate 100%
Mutation 7% One-point

7% sub-tree replacement
Model selection Best on validation
Fitness function R2 (maximization)
Function set +, -, *, / (binary)

average (ternary)
Terminal set constants, variables

Table 1: Genetic programming parameters for the
experiments.

fadjusted(x) =

{

f(x) if is-overfitting = false

f(x)− c(t)ℓ(x) if is-overfitting = true

c(t) =
Cov(ℓ, f)− δµf

Var(ℓ)− δµℓ

δµ = 0.05 ℓ

(4)

We decided to use tournament selection in all experiments.
The selection pressure affects the amount of overfitting and
bloat so the results would not be comparable if different
selection operators are used. This is slightly problematic
because the theory from which CPP is derived assumes pro-
portional selection. However, it has been shown for simple
benchmark problems that CPP can be combined with tour-
nament selection [9].

6. RESULTS
We have executed 30 independent runs for each of the four

algorithm configurations and both datasets resulting in a to-
tal of 240 independent GP runs. All experiments have been
executed using HeuristicLab [20], an open source framework
for heuristic optimization. Figure 1 shows the development
of fitness values on the training and test partitions and the
development of the training and validation correlation coeffi-
cient as observed in a single SGP run on the housing dataset.
The line chart in the top panel shows the trajectories of the
best and average fitness on the training partition and on the
test partition over 100 generations. The chart shows that
there is a slight decrease of the fitness on the test set at the
later stages of the GP run. The gradually decreasing test
fitness in combination with the increase in training fitness
shows that overfitting occurs, even though the effect is not
very strong.

The line chart in lower panel shows the trajectory of the
correlation of training- and validation fitness for this run.
The correlation decreases at a very early point in this run
and it can be observed that the turning point is at around
the same generation where the average test fitness also starts
to decrease in the top panel in Figure 1.

The four panels in Figure 2 show scatter plots of the train-
ing and validation fitness of all models in the population at

634

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

Generation

R
2

SGP (Housing)

Best R2 (train) Avg. R2 (train)

Best R2 (test) Avg. R2 (test)

0 20 40 60 80 100

−0.2

0

0.2

0.4

0.6

0.8

Generation

C
o
rr
el
a
ti
o
n

SGP (Housing)

ρ(ftraining(g), fvalidation(g))

Figure 1: Trajectories of training fitness, test fitness,
and ρ(ftraining(g), fvalidation(g)) over 100 generations
of a single SGP run on the housing dataset.

specific generations of the same run shown in Figure 1. In
the first generation the correlation is rather low, the maxi-
mum correlation is reached in generation eight. After gener-
ation eight the correlation decreases and it can be observed
in the scatter plots that the number of individuals with high
training fitness but low validation fitness increases.
Figure 3 shows trajectories of the best fitness on the train-

ing set, the test quality of the best training solution, the
test quality of the best validation solution, and the training-
and validation fitness correlation over 100 generations for all
tested algorithms variants and both datasets. The median
value over 30 independent GP runs is shown. The best train-
ing solution is the solution with the highest fitness found in
the run so far. The best validation solution is the solution
with the best fitness on the validation set found in the run
so far. A notable difference to Figure 1, which shows the
overall best test fitness, is that in Figure 3 the test fitness
of the finally selected solution, which is either the best on
training, or the best on validation, is reported.
The line charts in the top panels show the trajectory of

the median best fitness on the training set for all algorithm
configurations. It can be observed that the median best
fitness on the training set increases for almost all algorithm
variants; the only exception is SGP+AdaptiveCPP on the
housing problem. SGP without size constraints and SGP
with static constraints produce the best solutions regarding
the training fitness.

In the second row of Figure 3 the trajectories of the me-
dian test fitness of the best training solution are shown.
It is important to note that this information is not avail-
able to control the GP run. It can be seen first of all that
the test fitness is generally lower than the median train-
ing fitness. Another observation is that there is not much
differences between all algorithm variants. SGP without
size limits leads to the worst median test fitness for both
datasets. The median test fitness of the training best so-
lution of SGP+AdaptiveCPP is among the best for both
datasets.

In the panels in the third row the median test fitness of the
validation best solution is shown. This information is also
not available in the GP run. Comparing the results shown in
the third row with the results shown in the second row, it can
be observed that the validation best model has a better test
fitness than the training best model for the housing dataset.
For this dataset it is beneficial to use an internal validation
set for model selection. Again, there median test fitness
of the validation best solution produced by all algorithm
variants is almost the same for the chemical dataset. For the
housing dataset it can be observed that median test fitness
of the solution produced by SGP and SGP with static size
constraints is lower than the median test fitness produced
by the algorithm variants using CPP.

The panels in the fourth row of Figure 3 show the trajec-
tories of the median correlation coefficient of training and
validation fitness. The correlation value is also available in
the GP run and is used to control parsimony pressure in the
SGP+AdaptiveCPP configuration. The charts clearly show
that for the SGP runs without size constraints the median
correlation coefficient quickly decreases for both datasets.
This indicates that overfitting occurs in SGP without size
constraints. The median correlation value of the SGP runs
with static size constraints, which is the algorithm variant
that is most likely used in practice, is the same as the me-
dian correlation value of the other algorithm variants for
the chemical dataset and only slightly lower for the housing
dataset.

In summary, our experiments show that overfitting is not
a big issue for the chemical dataset, however, for the hous-
ing dataset overfitting can be observed. Additionally, the
experiment results show that the algorithm variants per-
form almost the same. The only exception is SGP without
size constraints, which also produces very large and bloated
solutions (not shown in the results). The analysis of the
correlation of training- and validation fitness seems to work
well an indicator of overfitting for the two exemplary regres-
sion datasets used in our experiments. This is interesting as
the information is available in the GP run and can be used
to dynamically adapt the process similarly to the approach
we proposed in this contribution. This result is probably
the most convincing and encouraging to work on a better
way of using this information for controlling the algorithm
to reduce the tendency of overfitting.

635

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Training R2

V
a
li
d
a
ti
o
n
R

2
Gen = 1, ρ = 0.65

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Training R2

Gen = 8, ρ = 0.82

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Training R2

Gen = 30, ρ = 0.66

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Training R2

Gen = 90, ρ = −0.06

Figure 2: The scatter plots in the lower half show the training vs. validation fitness of all models in the
population at four different generations of the same GP run shown in Figure 1.

7. CONCLUSION AND OPEN TOPICS
In this contribution we presented a way to detect overfit-

ting using a validation partition as described in [5] to cal-
culate the correlation of training and validation fitness of
all models in the population. We combined this approach
with covariant parsimony pressure, which makes it possible
to tightly control the average program length in a GP run.
While CPP is primarily a bloat control method we used it to
reduce overfitting. We described an adaptive approach using
CPP to gradually reduce the average program length when
overfitting is detected and allow growth of average program
length when no overfitting occurs. The idea is that the algo-
rithm should automatically find the correct program length
that is needed for accurate modeling without overfitting.
The aim of the contribution is to present the idea and first

results of this method for the reduction of overfitting and we
are aware of a number of shortcomings of the approach that
need to be addressed in further research to make it useful in
practical applications. The biggest issue is certainly that the
proposed methods tries to control overfitting through control
of program length. This is problematic as it is well known
that in GP program length and complexity are not equiva-
lent and overfitting is related foremost to program complex-
ity and not program length. The second issue is that in this
work we demonstrated the approach only on two different
regression datasets. In order to draw strong conclusions it is
necessary to test the approach on a larger number of differ-
ent datasets. And finally a number of additional parameters
for adaptive control of CPP must be tuned for the method
to work correctly. In the experiments presented in this work
we used reasonable default values for these parameters but
for practical applications it is necessary to run many more
experiments in order to find general rules for setting these
parameter values, or, alternatively, robust default settings.
All this issues are starting points for further research and
a more exhaustive analysis and potentially improvements of
the proposed idea.
In the experimental section we tested our algorithm and

compared the results to the results achieved with SGP (op-
tionally with static program length and depth constraints),
and with SGP with covariant parsimony pressure to hold the
program length at a constant level. In our experiments we
analyzed the behavior of the different algorithmic variants
on two real world regression datasets.
Our experiments show, that, except for the SGP config-

uration without size constraints, there are no strong differ-

ences regarding the overfitting behavior of the four algo-
rithm variants. Thus, no strong conclusions can be derived
from the experimental results on the two regression datasets
used in our experiments. We also observed that the corre-
lation coefficient of training- and validation fitness seems to
indicate overfitting in symbolic regression runs on the two
regression datasets used in our experiments. The correlation
value is interesting as this information is available in the GP
run and can be used to dynamically adapt the process simi-
larly to the approach we proposed in this contribution. We
suggest running further experiments with adaptive covariant
parsimony pressure on more datasets with different parame-
ter settings. In our experiments we only tested a 5% change
rate for the average program length per generation. How-
ever, this might be either too drastic or not strong enough
to effectively reduce the overfitting.

Another very interesting research question that is poten-
tially fruitful to follow up is the evolution of model complex-
ity in GP. Especially, if model complexity behaves like any
other inheritable trait, and thus, can be modelled in a simi-
lar way to the evolution of program length. If the evolution
of program complexity in relation to program length and fit-
ness is better understood it can become possible to formu-
late much better methods to control overfitting in symbolic
regression.

8. ACKNOWLEDGMENTS
This work mainly reflects research work done within the

Josef Ressel-center for heuristic opimization “Heureka!” at
the Upper Austria University of Applied Sciences, Campus
Hagenberg. The center “Heureka!” is supported by the Aus-
trian Research Promotion Agency (FFG) on behalf of the
Austrian Federal Ministry of Economy, Family and Youth
(BMWFJ). The authors would like to thank the anonymous
reviewers of EuroGP 2011 for their constructive and helpful
comments to improve a first version of this paper.

636

20 40 60 80 100
0.7

0.75

0.8

0.85

0.9

Best Training Fitness R2 (Chemical-I)

0 20 40 60 80 100
0.75

0.8

0.85

0.9

0.95

1

Best Training Fitness R2 (Housing)

20 40 60 80 100
0.4

0.45

0.5

0.55

0.6

Test R2 (training best) (Chemical-I)

0 20 40 60 80 100
0.25

0.3

0.35

0.4

0.45

0.5

Test R2 (training best) (Housing)

20 40 60 80 100
0.4

0.45

0.5

0.55

0.6

Test R2 (validation best) (Chemical-I)

0 20 40 60 80 100
0.5

0.55

0.6

0.65

0.7

0.75

Test R2 (validation best) (Housing)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

ρ(ftraining(g), fvalidation(g)) (Chemical-I)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

ρ(ftraining(g), fvalidation(g)) (Housing)

SGP SGP+static SGP+CPP SGP+AdaptiveCPP

Figure 3: Line charts of best training fitness, test fitness of the best training solution, test fitness of the
best validation solution, and training and validation fitness correlation of SGP, SGP with static size lim-
its (SGP+static), SGP with covariant parsimony pressure (SGP+CPP), and SGP with adaptive covariant
parsimony pressure (SGP+AdaptiveCPP). Values are median values over 30 independent runs for all 100
generations.

637

9. REFERENCES
[1] H. Akaike. Information theory and an extension of the

maximum likelihood principle. In Second International

Symposium on Information Theory, pages 267–281.
1973.

[2] R. M. A. Azad and C. Ryan. Abstract functions and
lifetime learning in genetic programming for symbolic
regression. In Proceedings of the 12th annual

conference on Genetic and evolutionary computation,
GECCO ’10, pages 893–900, New York, NY, USA,
2010. ACM.

[3] S. Dignum and R. Poli. Generalisation of the limiting
distribution of program sizes in tree-based genetic
programming and analysis of its effects on bloat. In
GECCO ’07: Proceedings of the 9th annual conference

on Genetic and evolutionary computation, volume 2,
pages 1588–1595, London, 7-11 July 2007. ACM Press.

[4] A. Frank and A. Asuncion. UCI machine learning
repository, 2010.

[5] C. Gagne, M. Schoenauer, M. Parizeau, and
M. Tomassini. Genetic programming, validation sets,
and parsimony pressure. In Genetic Programming, 9th

European Conference, EuroGP2006, volume 3905 of
Lecture Notes in Computer Science, pages 109–120,
Berlin, Heidelberg, New York, 2006. Springer.

[6] T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning - Data Mining,

Inference, and Prediction. Springer, 2009. Second
Edition.

[7] M. Keijzer. Scaled symbolic regression. Genetic

Programming and Evolvable Machines, 5(3):259–269,
Sept. 2004.

[8] S. Luke. Two fast tree-creation algorithms for genetic
programming. IEEE Transactions on Evolutionary

Computation, 4(3):274–283, Sept. 2000.

[9] R. Poli and N. F. McPhee. Covariant parsimony
pressure for genetic programming. Technical Report
CES-480, Department of Computing and Electronic
Systems, University of Essex, UK, 2008.

[10] J. Rissanen. A universal prior for integers and
estimation by minimum description length. Annals of

Statistics, 11:416–431, 1983.

[11] M. Schmidt and H. Lipson. Symbolic regression of
implicit equations. In Genetic Programming Theory

and Practice VII, Genetic and Evolutionary
Computation, pages 73–85. Springer US, 2010.

[12] G. E. Schwarz. Estimating the dimension of a model.
Annals of Statistics, 6(2):461–464, 1978.

[13] S. Silva and S. Dignum. Extending operator
equalisation: Fitness based self adaptive length
distribution for bloat free GP. In Proceedings of the

12th European Conference on Genetic Programming,

EuroGP 2009, volume 5481 of LNCS, pages 159–170,
Tuebingen, Apr. 15-17 2009. Springer.

[14] S. Silva and L. Vanneschi. Operator equalisation,
bloat and overfitting: a study on human oral
bioavailability prediction. In GECCO ’09: Proceedings

of the 11th Annual conference on Genetic and

evolutionary computation, pages 1115–1122, Montreal,
8-12 July 2009. ACM.

[15] G. F. Smits and M. Kotanchek. Pareto-front
exploitation in symbolic regression. In Genetic

Programming in Theory and Practice II, pages
283–299. Springer, 2005.

[16] C. Spearman. The proof and measurement of
association between two things. The American

Journal of Psychology, 15(1):72–101, 1904.

[17] L. Vanneschi, M. Castelli, and S. Silva. Measuring
bloat, overfitting and functional complexity in genetic
programming. In Proc. GECCO’10, pages 877–884,
July 7–11 2010.

[18] V. Vapnik. The Nature of Statistical Learning Theory.
Springer, New York, 1996.

[19] E. J. Vladislavleva, G. F. Smits, and D. den Hertog.
Order of nonlinearity as a complexity measure for
models generated by symbolic regression via pareto
genetic programming. IEEE Transactions on

Evolutionary Computation, 13(2):333–349, 2009.

[20] S. Wagner. Heuristic Optimization Software Systems -

Modeling of Heuristic Optimization Algorithms in the

HeuristicLab Software Environment. PhD thesis,
Institute for Formal Models and Verification,
Johannes Kepler University, Linz, Austria, 2009.

[21] S. Winkler, M. Affenzeller, and S. Wagner. Using
enhanced genetic programming techniques for evolving
classifiers in the context of medical diagnosis. Genetic

Programming and Evolvable Machines, 10(2):111–140,
2009.

638

