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ABSTRACT

We present a novel application of Grammatical Evolution to the
real-world application of femtocell coverage. A symbolic regres-
sion approach is adopted in which we wish to uncover an expres-
sion to automatically manage the power settings of individual fem-
tocells in a larger femtocell group to optimise the coverage of the
network under time varying load. The generation of symbolic ex-
pressions is important as it facilitates the analysis of the evolved
solutions. Given the multi-objective nature of the problem we hy-
bridise Grammatical Evolution with NSGA-II connected to tabu
search. The best evolved solutions have superior power consump-
tion characteristics than a fixed coverage femtocell deployment.

Categories and Subject Descriptors

D.1.2 [Programming Techniques]: Automatic Programming

General Terms

Algorithms

Keywords

Femtocell, symbolic regression, wireless networks, grammatical
evolution

1. INTRODUCTION
In telecommunication networks, femtocells are low power, low-

cost, user- deployed cellular base stations with a typical coverage
range of tens of meters [4]. In order to minimize operational ex-
penses, femtocells have considerable self-configuration and self-
optimization capability to enable plug-and-play deployment. These
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capabilities are implemented using algorithms that are designed to
automatically change certain network configuration parameters in
response to any changes in the environment it is operating in.

Furthermore, to maintain scalability when used in large networks,
these algorithms should work in a distributed manner whenever
possible, using only local information but achieving good global
performance.

Designing these highly distributed algorithms can be difficult,
particularly if the network environment varies significantly. More-
over, for femtocell deployments in enterprise environments a group
of femtocells are deployed where the individual cells need to work
together to jointly provide continuous coverage in a large building
or campus. Figure 1 shows the coverage of a femtocell setup for
an offices environment with 12 cells, with the colored areas indi-
cating areas of femtocell coverage. The base stations are in their
initial state with a power of -40dBm. When femtocell users enter
any gaps in the coverage between the femtocells, mobility proce-
dures (handovers or cell re-selections) to the underlying macrocell
is performed, or a loss of service occurs if macrocell coverage is
unavailable.

In this study we expand on previous work by Ho et al. [9] which
adopted Genetic Programming(GP)[15] to optimize femtocell cov-
erage. The evolved solution trees were comprised of a set of con-
ditional statements similar to a decision tree architecture. In this
paper, a grammar-based GP setup is adopted which allows us to
manipulate the structure of the solutions and incorporate domain
knowledge. More explicitly, we aim to widen our search space by
investigating if it is possible to fine tune the pilot power increments
using equations, instead of conditional programs for increasing or
decreasing the pilot power by a preset step (0.5dB). With this ap-
proach we also aim to generate solutions that are easier to analyze.

In addition to the novel application of GE to the dynamic, real-
world, femtocell coverage optimisation problem we examine the
utility of a number of extensions to the basic GE approach, includ-
ing the use of NSGA-II with tabu search and the use of more refined
forms of mutation.

The rest of the paper is structured as follows, in Section 2 pre-
vious work and GE is shown. The setup of the algorithm and the
experiments are explained in Section 3, and the results are shown
in Section 4. Finally, conclusions and future work are discussed in
Section 5.
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Figure 1: Coverage of a femtocell setup for an office environ-

ment with 12 cells, the color shows the pilot channel power in

dBm. The base stations are in their initial state with power

-40dbm.

2. BACKGROUND
This section describes the femtocell coverage problem, previous

work and a description of Grammatical Evolution.

2.1 Femtocell Coverage problem
We consider an intended area of coverage, such as an enterprise

environment, where a group of femtocells is deployed to jointly
provide end-user services. The problem addresses distributed cov-
erage optimization by adjusting the coverage of the femtocells to
satisfy the mobility, load and power objectives:

Mobility - To minimize femtocell mobility events within the fem-
tocell group’s intended area of coverage.

Load - To balance the load amongst the femtocells in the group to
prevent overloading or under-utilization.

Power - To minimize the pilot channel transmission power. This
objective is to prevent, whenever possible, leakage of the
femtocell group’s coverage outside its intended area of cov-
erage.

This is a multi-objective optimization problem with conflicting ob-
jectives. For example, increasing the coverage of a femtocell would
reduce the amount of mobility events, but doing so may increase the
load of the femtocell, and increase its pilot channel power. Thus it
is necessary to balance the requirements of all three objectives ac-
cording to their importance.

2.2 Previous Work
There have been previous studies of telecommunications and

EC [1], but only one specifically covering coverage algorithms and
GP [9]. Moreover, there have been no studies of GE and femto-
cell coverage algorithms. First, regarding cellular coverage opti-
mization, most related work in the literature deals with centralized
computation methods [9], e.g. the calculation of parameters such
as the number and locations of base stations (BS), pilot channel
transmit powers or antenna configurations using a central server
running an optimization algorithm. Many studies also focus on de-
termining the optimal BS numbers or placements to achieve the
operator’s quality of service or coverage target. This approach is

not always practical because network design is restricted by BS
placements. Instead, optimization of the configuration of cellular
networks where the locations of the base stations have been fixed
can be more realistic.

One example of self-configuration and self-optimization capa-
bility in femtocells deployments is coverage optimization. The aim
of coverage optimization in residential femtocell deployments is
to ensure that leakage of coverage by a single femtocell into public
spaces is minimized while at the same time maximizing indoor cov-
erage [8, 5]. The methods for this deployment are not applicable to
enterprise environments [9].

Previous work with GP and femtocells [9] automatically derived
a distributed algorithm to dynamically optimize the coverage of a
femtocell group using Genetic Programming. The resulting evolved
algorithm showed the ability to optimize the coverage well, and was
able to offer increased overall network capacity compared with a
fixed coverage femtocell deployment. The functions and terminal
set for GP consisted of conditions checking if the load, overlap and
probability of users entering a gap was over a predefined threshold,
as well as combining the branches of the conditionals. The termi-
nals were increase power, decrease power or do nothing. Here, we
extend the GP approach using grammatical GP, and using an equa-
tion form. Thus, the solutions that are evolved in our study are less
constrained than in Ho et al. [9] and different fitness functions are
used.

For work with a grammar and GP, Lewis et al. [11] enhanced
IEEE802.11 DCF. They designed MAC layer algorithms using GP
by evolving algorithms instead of optimizing values and tuning pa-
rameters,and a wider behavior space was searched. The variation
of contention window sizes was explored, the results outperformed
standard 802.11 behavior on a variable sized network under stan-
dard load, and the throughput performance is comparable to the
best aspects of the protocol. For their studies they use a grammar to
embed domain knowledge in the algorithms they evolve. One way
to extend this work is to use a formal grammar specification, e.g.
Backus-Naur Form(BNF), as used in grammar based approaches of
GE.

GE has been used by O’Neill and Ryan [13] to automatically
evolve caching algorithms, where simple caching algorithm solu-
tions were found. Hu and Goodman [10] used GP for wireless ac-
cess point configuration, the results improved when they post- pro-
cessed their solutions to find the minimum spanning tree. Yasuda
and Sato [16] used linear GP and a pruning operator on their solu-
tions for wireless LAN access point configuration to gain improved
performance and run time speed-up, which shows that pruning can
be efficient.

This section concludes that grammatical GP approaches, e.g.
GE, are viable for telecommunication network studies. It also re-
veals gaps in the generation of coverage algorithms for femtocells.

2.3 Grammatical Evolution
Grammatical Evolution (GE) [14, 7] is a grammar-based form of

GP [12]. It is inspired by representation in molecular biology and
combines this with formal grammars. The GE system is flexible
and allows the use of alternative search strategies, whether evolu-
tionary, deterministic or of some other approach. This system also
includes the ability to bias the search by changing the grammar
used. Since a grammar is used to describe the structures that are
generated by GE, editing the grammar modifies the output struc-
tures. This constraining power is one of GE’s main features. The
genotype-phenotype, i.e. input-output mapping means that GE al-
lows search operators to be performed on any representation in the
algorithm, e.g. on the genotype, as well as on partially generated

640



Grammar

Grammatical Evolution

 Mapping

Fitness function

 Pheno type

Operat ions

 Fitness

 Individual

Figure 2: The GE algorithm

phenotypes, and on the completely generated derivation trees or
phenotypes. Figure 2 shows an overview of the GE algorithm and
its components.

The components of GE are the mapping of the genotype to the
phenotype via a grammar, the evaluation of the phenotype in the
fitness function and the application of evolutionary operators to the
individuals.

In GE, the grammar mapping uses a Context Free Grammar,
which is a four tuple G = (N,Σ, R, S), where:

• N is a finite non-empty set of non-terminal symbols

• Σ is a finite non-empty set of terminal symbols and N ∩Σ =
∅, the empty set

• R is a finite set of production rules of the form R : N ← V :
A← α or (A,α) where A ∈ N and α ∈ V . V is the set of
all strings constructed from N ∪Σ and R ⊆ N × V ,R = ∅

• S is the start symbol, S ∈ N .

The genotype is used to map the start symbol into a sentence, by
the BNF-grammar. The mapping is done by reading input(codons)
from the genotype to generate a corresponding integer value, from
which an appropriate production rule is selected by using the map-
ping function. The production choices is determined by the current
codon’s integer value mod the number of production choices of cur-
rent rule. The genotype is read from left to right, and the codon to
be read is shifted every time the current rule has more than one
production. The derivation sequence is also expanded left to right
(depth-first). An example of a genotype generating a function using
a small equation grammar

<E> ::= <O><E><E> | <V>

<O> ::= + | -

<V> ::= x | 1

is shown in Figure 3.
The basic mapping function of GE has been described in this

section. In Section 3 we introduce the setup of the experiments.

3. SETUP
This section describes the femtocell simulation, the GE algo-

rithm, the grammar used in the GE algorithm and the fitness func-
tion.

3.1 GE Algorithm
The steps in a single iteration of the GE algorithm used here are:

Input Mapping O u t p u t

4 2 13 8 21 6 < E >

< O > < E > < E >

 0 : 4 % 2 = 0

+

1 : 2 % 2 = 0

< V >

 2 : 1 3 % 2 = 1

< V >

 4 : 2 1 % 2 = 1

x

 3 : 8 % 2 = 0

x

 5 : 6 % 2 = 0

+ x x

Figure 3: Example of GE genotype-to-phenotype mapping.

The derivation order codon value and production choice are

shown to the right of the arrows, e.g. from the start symbol

0 : 4%2 = 0.

1. Initialization: The genotype input in the initial solutions is
generated, uniformly randomly generated integer sequences

2. Mapping: A BNF form Context Free Grammar is used for
the mapping

(a) Integer to String translation where the grammar maps
integer value to a sentential form.

(b) When the end of the genotype is reached and the out-
put contains non-terminal symbols it wraps and is read
from the start again. If this still has non- terminals the
individual is reinitialized.

3. Evaluation: The individual solutions are evaluated using the
femtocell simulation.

4. Selection: Some individuals from the current population are
included in a new population using a tournament selection.

5. Variation operators: Individuals are modified by one point
crossover and uniform integer codon mutation.

6. Replacement: A new population is created from the selected
population and from the current population

The steps 2-7 are repeated until the maximum number of genera-
tions(iterations) is reached.

3.2 Grammar Description
The grammars used are for generating coverage algorithm solu-

tions which are equations, differing from the previous conditional
expressions used by Ho et al. [9]. The solutions the grammar gen-
erates does not use any predefined threshold parameters. A wide
range of functions were used to attmempt to capture different be-
haviours. Moreover, in order to avoid imaginary numbers, we only
use the real valued part of the function values. The argument passed
to the trigonometric functions sin, cos, tan is in degrees, hence
sind, cosd, tand, and the unary minus is uminus. The
grammar adopted in this study is in MATLAB syntax and is pre-
sented below.

<CODE> ::= value = <expr_0>;

<expr_0> ::= (<expr><op><expr>) | <preop>

<expr> ::= (<expr><op><expr>) | <var> | <preop>

| <preop_step> | <preop_monotone>
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<op> ::= + | - | * | / | ^

<preop> ::= sind(real(<expr>)) | sind(real(<expr>))

| cosd(real(<expr>)) | log(real(<expr>))

| tand(real(<expr>))

<preop_monotone> ::= exp(round(real(<expr>)))

| uminus(<expr>)

<preop_step> ::= heaviside(<expr>) | sigmoid(<expr>)

<var> ::= my_power | my_load | my_handover | <cnst>

<cnst> ::= <nr><nr> | <nr> | 0.<nr><nr> | 0.<nr>

<nr> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Many solutions found in earlier exploratory runs were of func-
tions that were monotonic (increasing, decreasing or simply con-
stant). Since these monotonic functions are not capable of respond-
ing to all environmental changes we bias slightly towards non-
monotonic solutions by using <expr_0> and also reduce the prob-
ability of using exp. In addition, we introduce sigmoid and heavy-
side functions in order to increase the number of non-monotonic
solutions. An example of a solution that will always increase the
pilot power based on a constant and the current power and load is
value = (5 + (my power + my load))

3.3 Fitness Function
The fitness function is used by GE to determine the quality of

the generated solutions when applied to the femtocell network. The
functions are mobility, load and power, and the duration of the sim-
ulation is T , the number of femtocells is N , and x is a vector of
femtocells. Statistics of mobility, load and power are collected
over a specified update period. These statistics are then used as
inputs into the algorithm, and for calculating the fitness. The fit-
ness function is a vector comprised of the fitness for each function,

F = [fM (M(h, r)), fL(L(x)), fP (P (x))].
We tried two different fitness functions approaches a weighted

and a Pareto optimal front. A weighted fitness function would use
the weights to modify the impact of each fitness component. The
results from using a weighted fitness function showed a very fast
convergence to a local optima, with very low diversity among the
solutions in experiment 1. Therefore we used a different approach
and used the NSGA-II algorithm to calculate fitness. The NSGA-
II creates a Pareto optimal front of non-dominated solutions[6].

3.3.1 Mobility fitness

The fitness function for mobility is based on the number of han-
dovers and relocation of users using the statistics of the mobility
events of the femtocells involving femtocell users. During the sim-
ulation, the number of update periods where the mobility events
(handovers and relocation) between femtocells and macrocells is
recorded during the update period. The number of femtocell han-
dovers is h, macrocell handovers is hM , femtocell relocations is r,
and macrocell relocations is rM . Mobility M is composed of

MM
b (h, r) =

T
∑

t=0

N
∑

i=1

hM
it +

T
∑

t=0

N
∑

i=1

rMit

Mb(h, r) = MM
b (h, r) +

T
∑

t=0

N
∑

i=1

hit +

T
∑

t=0

N
∑

i=1

rit

Mobility is the ratio of update periods where a mobility event oc-
curs to the total number of update periods is calculated. It is max-
imized when there are no handovers or relocation to the macrocell
underlay occur, and is 0 when all femtocell user handovers are to
or from macrocells. The average mobility is 1 if there are no han-
dovers or relocation, otherwise it is

M(h, r) =

{

MM
b (h, r)/Mb(h, r) if Mb(h, r) > 0

1 if Mb(h, r) = 0

The mobility fitness is calculated as

fM (M(h, r)) = e−M(h,r)(1−M(h, r)
1/4

)

3.3.2 Load Fitness

The fitness for the load is based on the average number of times
the load has been greater than a defined maximum load threshold,
lmax. If the mean cell load during an update period exceeds this
threshold, L is equal to one, else it is equal to zero. Cell load
0 ≤ x ≤ 7 is the load, lmax = 7 users in this scenario. This is
just below the capacity of the femtocell, as the aim is to prevent the
femtocell from operating at its capacity.

L(x) =

{

1 if x > lmax

0 if x ≤ lmax

Average load is

L(x) = 1/T

T
∑

t=0

N
∑

i=1

L(xit)

The fitness function for load is

fL(L(x)) = e−L(x)(1− L(x)
1/4

)

3.3.3 Power Fitness

Finally, the fitness for power P is the normalized power. Power
P , −50dBm ≤ x ≤ 11dBm

P (x) =
x− xmin

xmax − xmin

The average power is

P (x) = 1/T

T
∑

t=0

N
∑

i=0

P (xit)

and the fitness function for power is

fP (P (x)) = 1− P (x)

3.4 Femtocell Scenario
The femtocell problem addresses distributed coverage optimiza-

tion by adjusting the coverage of the femtocells to satisfy the mo-
bility, load and power objectives:

Mobility: Minimize the number of mobility procedures between
femtocells and macrocells (in both directions) for femtocell
users within the building.

Load: Balance the load amongst the femtocells in the group to
prevent overloading or under-utilization

Power: Minimize the pilot channel transmission power to prevent
leakage of the femtocell group’s coverage outside its intended
area of coverage.

This is a multi-objective optimization problem with conflicting ob-
jectives and it is necessary to balance the requirements of all three
objectives.

The simulation scenario used to calculate the fitness of the algo-
rithms is an office environment shown in Figure 1. The building
is an office with cubicles, closed meeting rooms, and toilets. The
exterior of the building is mainly glass and the interior is mostly
light interior walls and cubicle partitions. There are four stairwells
at each corner with thick concrete walls. The location of the 12
Femtocells were chosen such that they are spaced fairly evenly
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apart, but without any cell surveying done. This reflects a plug-
and-play deployment where some heuristic has been used in the
deployment, i.e. the femtocells are not placed too closely to each
other. This is a realistic plug-and-play femtocell deployment, but
can be sub-optimal due to the lack of exhaustive cell planning. In
the simulation each femtocell has a maximum capacity of 8 voice
calls, a macrocell underlay coverage is also assumed. A path loss
map is generated for the 450m x 500m area for each femtocell. For
shorter distances the path loss (dB) at d (meters) from a BS is mod-
eled as 38.5 + 20log10(d) + PLwalls, with a smooth transition
to 28 + 35log10(d) + PLwalls otherwise. A correlated shadow
fading with a standard deviation of 8 dB and spatial correlation of
r(x) = ex/20 for a distance x (meters) is considered. The assumed
transmission losses for the explicit building model are a function of
the incident angle, the model is taken from Ho et al. [9].

A user mobility and traffic model with the users moving to pre-
defined way points in the map at a speed of 1ms−1, spending a
some time in a way point before moving to another way point. At
the start the users are randomly placed at way points. In total 200
users are modeled, and each user has a voice traffic model which
produces 0.2 Erlangs of traffic.

When evaluating an algorithm, the scenario is run to simulate 24
hours of operation time, with the algorithm adjusting the femtocell
pilot power after collecting statistics for 30 minutes. The algorithm
start time for each femtocell is randomly dithered so that the femto-
cells to avoid synchronous pilot powers updates, with each femto-
cell’s initial pilot channel power set to -40dBm, the maximum pilot
channel power is 11dBm and minimum power is -50dBm. In or-
der to keep the users connected to the femtocell network, femtocell
to macrocell handovers are triggered when a user terminal’s pilot
channel receive power goes below -100dBm.

One evaluation of the Femtocell scenario on a core of an Intel i7
2.93GHz processor takes approximately 10 minutes.

3.5 Modifications to the GE Engine
We replace the standard integer mutation which randomly mod-

ifies an integer codon value to another random value with nodal
mutation proposed by Byrne et al. [2, 3]. The nodal mutation oper-
ator has a superior property of locality to the standard GE mutation
operator which is applied indiscriminately to any codon value irre-
spective of it’s context within the derivation tree. Nodal mutation
is only applied to individuals who have not undergone crossover.

NSGA-II is used to rank the individuals according to domination.
The top individuals from each front are used until the population is
filled, see Deb et al. [6]. When regenerating individuals the depth is
picked from the distribution of depths in the first front. This is both
an attempt to restrict bloat and search at depths were good solutions
have been found. All evaluated solutions are added to a tabu list. If
a solution is already on the tabu list it will also be regenerated.

The evolutionary parameter settings for the GE algorithm are
presented in Table 1. Due to the long run time to evaluate each
individual algorithm in the femtocell scenario, the number of gen-
erations was limited to 50.

4. RESULTS
The equations of the two best evolved solutions (GE6 and GE7)

are outlined below, and their corresponding power output behaviour
during the femtocell simulation are shown in Figure 4.

GE6: In Figure 4(a), F = [0.685, 0.562, 0.766]

tand(real(sind(real(sind(real(cosd(real(

my_handover))))))))+(log(real(exp(round(real(

(heaviside(my_handover)^(98-my_load)))))))

-tand(real(sigmoid(sigmoid(my_load))))));

Table 1: Experimental Parameter Settings

Parameter Value

MAX_WRAPS 2
CODON_SIZE 128
POPULATION_SIZE 200
INITIALISATION Ramped half-and-half
GENERATIONS 50
TOURNAMENT_SIZE 2
CROSSOVER_PROBABILITY 0.5
MUTATION 1 event per individual
PARSIMONY_PRESSURE True
EXTENDED_NODAL_PROBABILITY 0.5
EXTENDED_NODAL_TRIES 1000

GE7: In Figure 4(b), F = [0.699, 0.583, 0.741]

((my_handover.*75)-sind(real(my_load)))*
sind(real(6)));

This solution only uses mobility and load input data.

The solutions GE6 and GE7 show a desirable behaviour, where
the power is stepwise increased and then slowly decreasing, when
compared with a fixed coverage femtocell deployment, or other
extreme forms of evolved strategies which simply switch between
power on and off.

Examples of two evolved solutions (GE4 and GE5) which alter-
nate power on and off can be seen in Figure 5, and the resulting
expressions are provided below.

GE4: In Figure 5(a), F = [0.842, 0.450, 0.749]

(log(real(tand(real(my_load))))/(((73*my_handover)/

(0.8+my_power))-(heaviside(my_load)-heaviside(

sigmoid(exp(round(real(my_power))))))));

GE5: In Figure 5(b), F = [0.745, 0.490, 0.770]

(uminus((my_load*my_power))-exp(round(real(exp(

round(real(my_power)))))));

When analyzing the correlation between the fitness values there
is a positive correlation between power and load, and a negative
correlation between mobility and power, as well as mobility and
load, see Figure 6. This is to be expected from how the values of
the fitness functions are calculated. With higher power it is possible
for a cell to have more users and reach max capacity.

Moreover we tried to get an indication of terminal symbol fitness
by studying the number of times a terminal had been used in the
solutions and the average fitness value of the average of the fitness
function values there was no correlation. In Figure 7 we analyse the
composition of solutions within a population by focusing on the
ratio of production choices for each generation in the first pareto
front. The increasing size of the solutions in the first front can be
seen from the increase in the ratio of <var>.

In summary, the best evolved solutions demonstrate that it is pos-
sible to find solutions with good fitness that have non-trivial be-
haviour. That is, the behaviour is not only switching power on and
off or settling in constant states such as a typical fixed coverage
deployment.
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Figure 4: Power output of the Femtocells during simulation of the two best evolved solutions found.
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Figure 5: Power output of the Femtocells during simulation of two evolved power on/off switching solutions.
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Figure 7: Ratio of production choices used for each generation in the first front
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5. CONCLUSIONS & FUTURE WORK
We described how to evolve the coverage of femtocells using a

symbolic regression approach with GE. In order to maximize the
coverage of the femtocells and minimize the power used the algo-
rithm controlling the power settings of the femtocell are evolved.
The study contributes to automatic equation generation of cover-
age optimisation for telecoms networks, and it investigates how GE
behaves in a dynamic real-world environment.

The evolved solutions are simpler to understand and read for a
human compared to some evolved programs which use conditional
statements in Ho et al. [9]. The best evolved solutions are superior
on two of the objectives than the current approach which is to use
the maximum power setting (11dBm).

We also introduced novel modifications to Grammatical Evolu-
tion (GE), such as incorporating NSGA-II and tabu search in the
search engine. The use of a non-weighted fitness function allows
a more diverse set of solutions to be explored. More points on the
Pareto front were found when tabu search was used.

We are currently investigating the use of a hybrid approach where
an Evolutionary Strategy is used for a local optimisation of the con-
stants in promising equations. In addition, alternative fitness mea-
sures are being examined.
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