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ABSTRACT
Modeling processes is an important task in engineering; how-
ever, the generation of models using only experimental data
is not a straightforward problem. Linear regression, neural
networks, and other approaches have been used for this pur-
pose; nevertheless, a mathematical description is desirable
specially when an optimization is required. Symbolic re-
gression has been used for generating equations considering
only experimental data. In this paper, two new operators
are proposed to represent a mathematical model of a pro-
cess. These operators simplified the way for representing
equations making possible its use as a symbolic regression.
The correct model is generated selecting the appropriate op-
erators and parameters using an evolutionary algorithm like
the estimation of distribution algorithms. As a preliminary
results, three cases are used to illustrated the performance
of the proposed approach. The results indicates that the
use of these α, β operators are a promising way to apply
symbolic regression to model complex process.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming-
Program synthesismeasures, performance measures]

General Terms
Algorithms, Design, Experimentation

Keywords
Symbolic regression, α-β Operators, Estimation of distribu-
tion algorithms, Evonorm for Proceedings

1. INTRODUCTION
Symbolic regression has been used to represents models of

complex processes where measured or experimental data is
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adjusted to a specific mathematical formulas. Usually an-
alytic methods are used; however, the computer can be in-
volved to automatizing this process using evolutionary com-
putation. Two principal paradigms has been developed for
symbolic regression: Genetic programming ([3, 4, 1]) and
grammar evolution ([7, 10, 2])

In genetic programming, the mathematical formulas are
presented by trees structures evaluated using Lisp program-
ming language; however, the same representation is used
considering other programming languages ([8]). Grammar
evolution applies operators to a integer string to generate
a program. The principal difference with genetic program-
ming is that other programming language can be used not
only a tree structure, so its not required a Lisp interpreter
to evaluate the integer string, simplifying its implementation
([14]).

The idea of our proposal is to use multi-variable calculus
([11, 15, 9]) for optimization of industrial processes. The
use of calculus explains why a mathematical model is pre-
ferred over other representations. Usually, a simple repre-
sentation could be useful because the derivation of these
equations could be easy. Given a process, a mathemati-
cal model is proposed; then, optimization approaches are
applied to adjust some parameters of the proposed model
and tested again measured data of the process. In some
cases, a model is not provided so this one must be generated
considering only experimental or measured data. A similar
approach is proposed because a mathematical model is gen-
erated given a fixed structure (equation) formed by two pro-
posed operators called α and β where the functions, variable
interactions, and constants are changed by an evolutionary
algorithm. The α and β operators make reference to a pre-
defined mathematical functions. The α operator applies a
mathematical function of one argument and the β operator
requires two arguments and applies four basic mathemati-
cal operations of addition, substraction, multiplication and
division. A modeling of a complex process can be made ad-
justing the parameters of these operators generating relative
simple equations.

The methodology proposed, the α and β operators and the
Evonorm algorithm are described in section II. In section III,
a numeric experiments and results are presented considering
measured data of three real process given in the literature.
Duscussion, conclusion and future work is given in the last
section.
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Table 1: Parameters and mathematical functions of
the α operator.

α operator mathematical operation
1 (k1x+ k2)
2 (k1x+ k2)2

3 (k1x+ k2)3

4 (k1x+ k2)−1

5 (k1x+ k2)−2

6 (k1x+ k2)−3

7 (k1x+ k2)1/2

8 (k1x+ k2)1/3

9 exp(k1x+ k2)
10 log(k1x+ k2)
11 sin(k1x+ k2)
12 cos(k1x+ k2)
13 tan(k1x+ k2)

2. SYMBOLIC REGRESSION, α, β OPERA-
TORS AND EVONORM

The modeling of processes usually requires a mathemat-
ical approach where the search of analogies and studies of
similar processes are made. A second step imply the ad-
justment of parameters of a proposed mathematical model
considering usually measured data. An experimental design
is proposed in several cases when there are not available
data; however, other problems are involved here because
every experiment could be very expensive, so a low num-
ber of experiments is desirable specially when the process
has several input variables and responses [6]. The α and
β are defined below, then Evonorm algorithm is described
and finally a methodology is proposed to use the α and β
operators and Evonorm for symbolic regression considering
only experimental data.

2.1 α and β operators
In this proposal, an equation is represented by the com-

bination of two operators, the α operator and the β opera-
tor. An α operators is defines as a function that takes only
one arguments and apply only one mathematical operation.
Considering a review of several models of real process, 13
operations are defined (see Table 1). An α operator uses
two parameters called k1 and k2 that are real numbers and
an integer operator α that describe the mathematical oper-
ation. The operator α is defines as:

Oprα(x, k1, k2) = α((k1 ∗ x+ k2)) (1)

where α={ X1, X2,X3,X−1, X−2, X−3, X1/2, X1/3,
exp(X), log(X), sin(X), cos(X),tan(X) }. Depending of
the number selected, a specific operation is made, per ex-
ample, if α=1 then the operation made is (k1 ∗ x + k2), if
α= 13 then the operation made is tan(k1 ∗ x + k2). Every
integer defines a mathematical operation described in Table
1.

A β operator is defined as a function that require two
arguments and makes the four basic arithmetic operations
β={+. −, ∗, / } so a β operator equal to 1 imply the plus
operator or β(a, b) = a + b, and β(a, b) = a/b if β=4. An
hypothesis is presented: The use of α and β operators can
be used to approximate non linear functions if a correct se-
lection of its parameters is made. The problem is the correct

selection of the operations and the parameters involved. The
solution of this problem is made using an evolutionary algo-
rithm, specifically an estimation of distribution algorithms.
In this work, Evonorm is used to solve the problem of selec-
tion the suitable parameters (k’s) and integers to define the
α and β operations.

2.2 Evolutionary algorithm Evonorm
Evonorm is an easy way to implement an estimation of

distribution algorithm [12, 13]. As a evolutionary algorithm
selection of new individuals and the generation of a new pop-
ulation is used; however, the crossover and mutation mech-
anism is substituted by an estimation of parameters of a
normal distribution function. The following steps are used
in Evonorm:

1. Evaluation of a population P .

2. Deterministic selection of individuals from P to PS.

3. Generation of a new population using PS

A population P is a matrix of size Ip (total of individuals)
and Dr (total of decision variables). A solution is a set of
decision variables and this set is represented as a real vector.
Every row of the population P represents a set of parameter
of the solution. The selection mechanism is deterministic
because the most fittest individuals are selected. Usually the
number of selected individuals are lower than the number of
the original population, usually a twenty or ten percent of
the total population are selected. A random variable with
normal distribution is estimated per decision variable, so
a marginal distribution function is used. Two parameters
are estimated, the mean and the standard deviation, that
is determined using the values of the selected individuals.
The population of selected individuals is a matrix Ps of size
Is (total of individuals selected) and Dr The equations (2,
3) are used to calculate the mean and standard deviation
considering every vector of the population Ps.

µpr =

Is∑
k=1

(Pspr,k)/Is (2)

σpr =
√

(

Is∑
k=1

(Pspr,k − µpr))/Is (3)

A new population is generated using the estimated normal
random variables. This is a stocasting process;, however, an
heuristic is used to maintain an equilibrium between explo-
ration and exploitation, so new solutions can be found not
necessary near of the mean calculated. The best solution
found Ix at the moment is involved in the generation so
in the 50% percent of the times the mean is used in the
calculations and in the other 50% percent of the time the
best solution found Ix is used as a mean as is shown in the
following seudocode:

for k = 1 to Ip
for pr = 1 to Dr

if U() > 0.5
P (k, pr) = N(µpr, σpr)

otherwise
P (k, pr) = N(Ixpr, σpr)
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end of condition
end of cycle pr
end of cycle k

The random variable U() has a uniform distribution func-
tion, N() is a random variable with a normal distribution
function and Dr is the total of decision variables involved in
the solution.

2.3 Methedology proposed
Considering a table of experimental data, it is possible to

use the methodology proposed. This approach involves the
following steps:

1. Selection of the number of the α and β operators.

2. Make a representation of the parameters k’s, α and β
operators for the evolutionary algorithm.

3. Execute a search algorithm to set the parameters con-
sidering several runs to minimize the difference be-
tween the real process and the model.

4. Decode the representation to generate the equations
transforming the α and β operators to its correspond-
ing mathematical operation.

5. Use the model for analysis, prediction, control or op-
timization.

The following cases illustrate the implementation of every
step of the methodology proposed.

3. EXPERIMENTS AND RESULTS
An illustration of the proposed approach is made by sym-

bolic regression of three processes. The experimental data
was extracted from the book of Montgomery about regres-
sion [5]. The minimization of the mean square error is used
as a fitness function for all the models proposed. A pre-
processing is made in every experimental data to consider
a normalization between 0 and 1. All the process uses the
same algorithm Evonorm. This one uses 200 individuals, 50
ones are selected and the algorithm runs 200 generations.

The first process is a wind generator that relates the wind
velocity and the DC generated. Table 2 illustrates the ex-
perimental data.

A configuration that uses three α operators per variable
and two β operators is used. The representation used by
the evolutionary algorithm requires six k parameters (real
numers), three integers for the α operators and two integers
for the β operators. Ten runs was made and the best so-
lution was selected (Table 3). This solution has an mean
square error of 0.1032508. The performance of the model is
illustrated in figure 1.

The decoded representation generates equations (4-8). The
α1 = 3 operator has the reference to the operation (x ∗
k11+, k21)3, the operation α2 = 1 is (k11 ∗x+ k21), α3 = 5
is (x∗k13+, k23)−2, and β1 = 1 is the addition of the terms,
and β2 = 3 is the multiplication of the terms.

r1 = (x ∗ k11 + k21)3 (4)

r2 = (x ∗ k12 + k22) (5)

r3 = (x ∗ k13 + k23)−2 (6)

r4 = r1 + r2 (7)

y = r3 ∗ r4 (8)

Table 2: Experimental data of the first process ([5]).
Wind velocity (Mph) DC generated

5.000 1.582
6.000 1.822
3.400 1.057
2.700 0.500
10.000 2.236
9.700 2.386
9.550 2.294
3.050 0.558
8.150 2.166
6.200 1.866
2.900 0.653
6.350 1.930
4.600 1.562
5.800 1.737
7.400 2.088
3.600 1.137
7.850 2.179
8.800 2.112
7.000 1.800
5.450 1.501
9.100 2.303
10.200 2.310
4.100 1.194
3.950 1.144
2.450 0.123

Figure 1: Performance of the model versus the per-
formance of the real process.
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Table 3: Results of the best solution found for the
first process.

α− β operator Value of the parameter
k11 0.7110103
k21 0.0047252
k12 0.9999239
k22 0.0072103
k13 0.6586252
k23 0.5209569
α1 3
α2 1
α3 5
β1 1
β2 3

The equations can be resumes in the equation (9).

y = ((x∗k11+k21)3+(x∗k12+k22))∗(x∗k13+k23)−2 (9)

The second process is a little more complex. The value of
2-methoxyethanol to 1,2-dimethoxyethane (dimensionless)
and the temperature (Celsius grades) are related with the
cinematic velocity (m2/s). Table 4 illustrates the informa-
tion of the process.

The process involves two input variables and one output
response, so a new model is required. The number of α
and β operators are incremented considering four and three
operators respectively (10-16).

r1 = α1(x1 ∗ k11 + k21) (10)

r2 = α2(x2 ∗ k12 + k22) (11)

r3 = α3(x1 ∗ k13 + k23) (12)

r4 = α4(x2 ∗ k14 + k24) (13)

y5 = β(r1, r2) (14)

y6 = β(r3, r4) (15)

y = β(r5, r6) (16)

The characteristics of Evonorm are the same as the first
process. Ten runs was made and the best solution was se-
lected (Table 5). This solution has an mean square error of
0.0671133. The performance of the model is illustrated in
Figure 2.

The decoded representation generates the equations (17-
23).

r1 = (x1 ∗ k11 + k21)3 (17)

r2 = (x2 ∗ k12 + k22)3 (18)

r3 = (x1 ∗ k13 + k23) (19)

r4 = cos(x2 ∗ k14 + k24) (20)

r5 = r2/r1 (21)

r6 = r3 + r4 (22)

y = r6/r5 (23)

The third process is a thermal solar energy system. It is
desirable to model the heat flux (kWatts) considering five
input variables, the sunstroke x1 (watts/m2), focus position
in east direction x2 (inches), focus position in south direction

Table 4: Experimental data of the second process
([5]).

x1 x2 y
0.92 -10 3.13
0.92 0 2.43
0.92 10 1.94
0.92 20 1.59
0.92 30 1.33
0.92 40 1.13
0.92 50 0.97
0.92 60 0.85
0.92 70 0.75
0.92 80 0.67
0.75 -10 2.27
0.75 0 1.82
0.75 10 1.49
0.75 20 1.25
0.75 30 1.06
0.75 40 0.92
0.75 50 0.8
0.75 60 0.71
0.75 70 0.63
0.75 80 0.57
0.57 -10 1.59
0.57 0 1.32
0.57 10 1.12
0.57 20 0.96
0.57 30 0.83
0.57 40 0.73
0.57 50 0.65
0.57 60 0.58
0.57 70 0.52
0.57 80 0.47
0.36 -10 1.16
0.36 0 0.99
0.36 10 0.86
0.36 20 0.75
0.36 30 0.67
0.36 40 0.59
0.36 50 0.53
0.36 60 0.48
0.36 70 0.44
0.36 80 0.4
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Figure 2: Performance of the model versus the per-
formance of the real process.

Table 5: Results of the best solution found for the
second process.

α− β operator Value of the parameter
k11 0.3951954
k21 0.4894118
k12 0.6295830
k22 0.6217788
k13 0.9723338
k23 0.9600167
k14 0.0000054
k24 0.3142900
α1 3
α2 3
α3 1
α4 12
β1 4
β2 1
β3 4

Table 6: Experimental data of the third process
([5]).

y x1 x2 x3 x4 x5

4540 2140 20640 30250 205 1732 99
4315 2016 20280 30010 195 1697 100
4095 1905 19860 29780 184 1662 97
3650 1675 18980 29330 164 1598 97
3200 1474 18100 28960 144 1541 97
4833 2239 20740 30083 216 1709 87
4617 2120 23305 29831 206 1669 87
4340 1990 19961 29604 196 1460 87
3820 1702 18916 29088 171 1572 85
3368 1487 18012 28675 149 1522 85
4445 2107 20520 30120 195 1740 101
4188 1973 20130 29920 190 1711 100
3981 1864 19780 29720 180 1682 100
3622 1674 19020 29370 161 1630 100
3125 1440 18030 28940 139 1572 101
4560 2165 20680 30160 208 1704 98
4340 2048 20340 29960 199 1679 96
4115 1916 19860 29710 187 1642 94
3630 1658 18950 29250 164 1576 94
3210 1489 18700 28890 145 1528 94
4330 2062 20500 30190 193 1748 101
4119 1929 20050 29960 183 1713 100
3891 1815 19680 29770 173 1684 100
3467 1595 18890 29360 153 1624 99
3045 1400 17870 28960 134 1569 100
4411 2047 20540 30160 193 1746 99
4203 1935 20160 29940 184 1714 99
3968 1807 19750 29760 173 1679 99
3531 1591 18890 29350 153 1621 99
3074 1388 17870 28910 133 1561 99
4350 2071 20460 30180 198 1729 102
4128 1944 20010 29940 186 1692 101
3940 1831 19640 29750 178 1667 101
3480 1612 18710 29360 156 1609 101
3064 1410 17780 28900 136 1552 101
4402 2066 20520 30170 197 1758 100
4180 1964 20150 29950 188 1729 99
3973 1835 19750 29740 178 1690 99
3530 1616 18850 29320 156 1616 99
3080 1407 17910 28910 137 1569 100

x3 (inches), focus position in north direction x4 (inches), and
time (hours) of the day x5.

The process involves five input variables and one output
response. Only a basic configuration (one α operator per
input variable) was used because the results indicates a good
performance (24-32).

r1 = α1(x1 ∗ k11 + k21) (24)

r2 = α2(x2 ∗ k12 + k22) (25)

r3 = α3(x3 ∗ k13 + k23) (26)

r4 = α4(x4 ∗ k14 + k24) (27)

r5 = α5(x5 ∗ k15 + k25) (28)

y1 = β1(r1, r2) (29)

y2 = β2(r3, y1) (30)

y3 = β3(r4, y2) (31)

y = β4(r5, y3) (32)

After ten runs of Evonorm algorithm, the best solution
was selected and its results are shown in Table ??. The
performance of the model is illustrated in Figure 3.

The decoded representation generates the equations (33-
41).
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Figure 3: Performance of the best model found ver-
sus the real output response.

r1 = (x1 ∗ k11 + k21) (33)

r2 = cos(x2 ∗ k12 + k22) (34)

r3 = cos(x3 ∗ k13 + k23) (35)

r4 = (x4 ∗ k14 + k24)−3 (36)

r5 = (x5 ∗ k15 + k25) (37)

y1 = r1/r2 (38)

y2 = r3 ∗ y1 (39)

y3 = r6− y2 (40)

y = r5 ∗ y3 (41)

(??).

4. DISCUSSION, CONCLUSION AND FU-
TURE WORK

The easy implementation is the principal advantage of the
proposed approach; however, several aspects about symbolic
regression with these operators are open. Consider the fol-
lowing ten results to get a model of the first process (k con-
stants were omitted for space, see Table 8):

Every result has a good performance, however, the math-
ematical operations are different in every model generated.
Some solutions has complex mathematical functions, like the
solution number 2, its requires two cosine functions. Other
ones requires more simple functions like the solution num-
ber 10 because it requires only a root cubic operation and
one multiplication. This variety of potential solutions open
the opportunity to explore other models and consider other
optimization criteria like multi - objective functions where
a search of models with simple functions and good perfor-
mance could be considered. Other way to generate a less
complex equations is to establish other α operations or mod-
ify the set to exclude the cubic, root cubic and tan functions.

The proposed methodology implies the use of a predefined

Table 7: Results of the best solution found for the
third process.

α− β operator Value of the parameter
k11 0.9999917
k21 0.3199642
k12 0.9999974
k22 0.0270188
k13 0.4034232
k23 0.9474206
k14 0.2294144
k24 0.7506092
k15 0.1785192
k25 0.4411746
α1 1
α2 12
α3 12
α4 6
α5 1
β1 4
β2 3
β3 2
β4 3

MSE 0.0035916

Table 8: Ten results for the first process.
Solution α1 α2 α3 β1 β2 MSE

1 14. 4. 1. 4. 1. 0.0100100
2 12. 12. 10. 3. 1. 0.0019435
3 8. 12. 7. 1. 3. 0.0014789
4 10. 3. 8. 4. 1. 0.0014698
5 8. 5. 7. 3. 3. 0.0018309
6 1. 12. 7. 1. 3. 0.0015609
7 11. 11. 1. 4. 4. 0.0019254
8 1. 12. 7. 1. 3. 0.0015742
9 1. 8. 1. 4. 4. 0.0015355
10 1. 1. 8. 3. 1. 0.0029486
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configuration where α and β operators are included; however
other configurations could be considered.

A demonstration about the universality approximation of
the α-β operators must be considered because there are not
a warranty that any configuration could be useful. The val-
idation of every model is important for its usability, so a
residual analysis must be considered; in resume, a regres-
sion suppositions must be considered in symbolic regression
using α and β operators.

It is necessary to consider the performance of the proposed
approach when more variables are involved. Usually three,
four and more variables are involved so the number of the
operators should be increased, however, this condition must
be evaluated.

As a future work, the number of operations and the rela-
tionship with the number of variables will be evaluated to
establish a requirement of an improvement. The assignation
of the number of α and β operator must be automatized and
be included in the representation to be used in the evolution-
ary algorithm. A theory must be established to demonstrate
the hypothesis established above to consider the models of
α and β operators as a universal approximator. Finally, the
use of the equation for optimizing process will be considered
as an application of this approach.
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