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ABSTRACT

The inclusion of local search (LS) techniques in evolutionary
algorithms (EAs) is known to be very important in order to
obtain competitive results on combinatorial and real-world
optimization problems. Often however, an important source
of the added value of LS is an understanding of the problem
that allows performing a partial evaluation to compute the
change in quality after only small changes were made to a
solution. This is not possible in a Black-Box Optimization
(BBO) setting. Here we take a closer look at the added
value of LS when combined with EAs in a BBO setting.
Moreover, we consider the interplay with model building, a
technique commonly used in Estimation-of-Distribution Al-
gorithms (EDAs) in order to increase robustness by statis-
tically detecting and exploiting regularities in the optimiza-
tion problem. We find, using two standardized hard BBO
problems from EA literature, that LS can play an impor-
tant role, especially in the interplay with model building in
the form of what has become known as substructural LS.
However, we also find that optimal mixing (OM), which in-
dicates that operations in a variation operator are directly
checked whether they lead to an improvement, is a superior
combination of LS and EA.

Categories and Subject Descriptors

I.2 [Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search

General Terms

Algorithms, Performance, Experimentation
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Evolutionary Algorithms, Genetic Algorithms, Estimation-
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1. BACKGROUND, AIM AND SCOPE

1.1 Local Search
In many problems of interest, local features of the search

space are highly informative with respect to how to improve
a given solution. For this reason, in discrete (combinato-
rial) spaces, which we focus on here, many Local Search
(LS) techniques exist, such as e.g. Hill Climbing (HC) and
Tabu Search [3]. LS techniques are well known in the fields
of Artificial and Computational Intelligence (AI/CI) as well
as in combinatorial optimization. In the former, they are
typically applied as Black-Box Optimization (BBO) tech-
niques where no assumptions are made about the problem
at hand [16]. Many success stories however also stem from
LS techniques that are tailored to a specific (combinato-
rial) problem [1]. LS techniques are by themselves often
already capable of obtaining solutions of good quality and
their use is widely accepted in applications and research.
LS techniques are particularly fast if only small changes
are made and the corresponding change in solution quality
can be computed efficiently (i.e. a partial evaluation), rather
than requiring a complete new evaluation of the optimiza-
tion function. This is typically possible for combinatorial
optimization problems, but clearly not in a BBO setting.

1.2 Evolutionary Algorithms
The scope of Evolutionary Algorithms (EAs) is broader

in that the focus is on improving the (average) quality of a
set of solutions, called the population, rather than a single
solution [4]. An advantage that EAs therefore have is that
the collective information stored in the population can be
used to generate new solutions. If correlations between the
quality of a solution and instances of certain variables exist,
multiple solutions will exhibit similar substructures. De-
tecting and exploiting the existence of such substructures,
e.g. via proper mixing, then allows EAs to construct im-
proved solutions in a parallel manner that is not possible
in a single-solution LS. Although thereby typically able to
reach a higher quality, EAs are also typically slower to arrive
at that quality. This difference is largest when LS techniques
can use partial evaluations but EAs can’t because of large
variations made when constructing new solutions. For large
instances of combinatorial problems such as traveling sales-
man instances with thousands of cities, LS techniques can
often still provide good-quality solutions within a reasonable
amount of time whereas (general) EAs typically can’t.
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1.3 Evolutionary Local Search
A sensible question is whether the best of both worlds

in performance can be obtained by incorporating LS tech-
niques in EAs, i.e. to obtain higher quality solutions than LS
alone while being much faster than EA alone. Given the low
computational effort of LS techniques, they can be applied
to each solution after it is generated in an EA, both initially
and as a result of variation operators. The EA then works
in the space of local optima that are found by the LS tech-
niques. Such combinations are known under the names of
Memetic Algorithms [11] (MA) and Evolutionary or Genetic
Local Search [21] (ELS/GLS). Indeed, many studies report
better quality than when the LS techniques are used alone,
and far smaller computing times than when EAs are used
alone. The fact that results obtained by these methods often
improve upon the state-of-the-art is testimony to their effi-
ciency. However, much of this efficiency can be contributed
to being able to perform partial evaluations and thus this
may change when faced with a problem in a BBO setting.

1.4 Model Building
An important key to the success of EAs is that the bias

induced by variation matches the structure of the problem.
The aforementioned mixing properties of EAs are only ben-
eficial if this leads to the exchange of partial solutions that
jointly represent an important contribution to quality. If
such information about relations between variables, which is
typically called linkage, is lost as a result of disruptive mix-
ing, the probability of success can decrease dramatically [17].
It is therefore important to tailor the operators of variation
to the problem at hand. In a BBO setting however, this
is not possible. To still ensure favorable mixing properties,
learning techniques can be employed to statistically analyze
the solutions that have been evaluated so far. Typically,
learning is used to find the most fitting instance of a pre-
determined model. The most prominent development along
this line are Estimation-of-Distribution Algorithms (EDAs)
in which a probabilistic model is learnt (or, synonymously,
built) and a corresponding probability distribution is sam-
pled to generate new solutions [10, 12]. The probabilistic
models are often built around the concept of statistical de-
pendencies between variables, which corresponds directly to
the notion of linkage.

1.5 Local Search and Model Building

1.5.1 Robust Black-Box EA and Problem-Specific LS

EDAs aim to provide a more robust, encoding-independent
manner of performing evolutionary search and therefore al-
most always target a BBO setting. As such, partial evalu-
ations are typically assumed not to be possible in EDA re-
search and hence the lack of speed of an evolutionary search
is not considered an issue, but rather is the number of re-
quired function evaluations. In that sense, EDAs are ideal
candidates for the MA/ELS/GLS format. LS techniques
exploit problem-specific knowledge to get to local optima
quickly so that the statistical analysis that underlies varia-
tion is based on the common characteristics of high-quality
solutions only.

1.5.2 Improved Model Building via LS

An interesting effect of combining model building (in EDAs)
with LS techniques is that the model building may be im-

proved. For model building, selection in an EA essentially
reduces noise [14] because regularities stand out more. How-
ever, selection typically isn’t a very strong process and un-
less the search is near termination, the reduction in noise
will not be substantial. Increasing the selection intensity
only drives up the required population size to ensure suf-
ficient diversity for the multi-generational search, which in
turn increases computation time because performing learn-
ing on a larger population will require (much) more time. If
LS techniques are applied however, starting from different
(random) solutions, the noise is strongly reduced while the
diversity isn’t reduced too much (as long as different local
optima are found). Suboptimal instances, that for strongly
linked problem variables are a source of noise for the learn-
ing task, are effectively weeded out. Indeed, it was recently
found that the population size and the number of function
evaluations required by an EDA were reduced in a corre-
sponding EDLS [15]. However, the function evaluations for
the LS technique were not counted, which is misleading from
a BBO perspective. In this paper we shall therefore take a
look at performance when also the function evaluations re-
quired by LS are counted.

1.5.3 Driving Black-Box LS with Model Building

Another interesting effect of combining model building (in
EDAs) with LS techniques has recently gathered more at-
tention in literature. As mentioned above, many models in
EDAs identify statistical dependencies, or linkage, between
variables. This information can also be exploited in LS.
More precisely, if a set of variables is identified as dependent,
or linked, LS can be made to search the joint neighborhood
of these variables to ensure that positive synergistic effects
of changing these variables together are processed. Recent
studies of such methods of neighborhood configuration for
LS, which is called substructural LS, have shown that an
improvement in performance can be obtained [8, 9].

1.6 Optimal Mixing
Very recently, the notion of optimal mixing (OM) was

coined [19] in a study that followed up the introduction of
the Linkage Tree Genetic Algorithm (LTGA) [18]. In the
LTGA, variation is a recombination of two parents. Specifi-
cally, recombination is of the crossover type where crossover
follows the structure dictated by a linkage tree (LT). A LT is
the result of performing a statistical analysis in the form of
hierarchical clustering. Importantly, whenever crossover is
performed based on a linkage group, a check is carried out to
see if the crossover operation was for the better, i.e. whether
one of the children is better than both parents. This addi-
tional check, which requires additional function evaluations,
underlies the notion of OM. OM is not restricted to crossover
but can be applied to any variation operator. Instead of fully
creating new solutions first and only then evaluating fitness,
in OM an existing parent solution is chosen and cloned first.
Then, during variation, each time a partial solution is gen-
erated, such as is the result of crossing over a part from
another parent as reminiscent of GAs or sampling values for
a subset of variables as reminiscent of EDAs, this part is
used in the full solution that was cloned. If this leads to the
solution being improved, the improved solution is kept, oth-
erwise the solution is left unchanged. Variation continues,
each time testing whether newly generated partial solutions
lead to improvements. Thus, during variation, similar to the
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modus operandi of a LS technique, the quality of a solution
monotonically improves.

Following the definition of OM, an improvement over the
initial LTGA was proposed. The main difference is that
instead of using the same parent to perform a single com-
plete OM crossover with, each time a crossover action is
to be performed, a new donor parent is randomly selected
from the parent pool. If maximum-likelihood estimates are
used, this is similar to sampling a probability distribution,
which is reminiscent of EDAs rather than GAs, indicating
that LTGA could also be claimed to be an EDA. LTGA,
especially in its latest version, was found to be highly effi-
cient, outperforming such advanced algorithms as ECGA on
GA-difficult optimization problems [19].

1.7 Aim and Scope
OM transforms the more common form of variation into

one that is similar to that of LS techniques. One ques-
tion is therefore whether the effectiveness of LTGA is due
to the fact that the role of LS is fully fused with that of
variation or whether similar performance can be obtained
by performing LS techniques and variation side by side as
in MA/ELS/GLS. Another question is what happens if we
move to the other side of the spectrum and only apply
deterministic LS techniques that try all possibilities in a
neighborhood. These techniques can still be driven by sim-
ilar model-building approaches as used in LTGA (or other
EDAs). The LTGA in that sense is in the middle of the
spectrum, performing not a full deterministic LS with all
possibilities in a learnt neighborhood, but rather a stochas-
tic LS in that neighborhood, attempting to mix only a single
partial solution copied from a single parent in with another
solution. A further important question is whether LS, both
in MA/ELS/GLS format and in the form of OM, helps when
faced with a problem in a BBO setting.

2. FEATURED EAS
In the remainder we denote the population size by n and

the number of problem variables by l.

2.1 sGA
Arguably the simplest and most common EA, especially

for discrete spaces, is the simple Genetic Algorithm (sGA),
although no unique definition exists for it. In the GA used
here, n new solutions are generated by randomly pairing 2
parent solutions and creating 2 offspring solutions via uni-
form crossover. In order not to lose good solutions, i.e. to
ensure elitism, we combine the current population and the
offspring and perform selection on these 2n solutions to se-
lect n survivors. To ensure convergence by logistic growth
of the optimal solution over multiple generations, we use
tournament selection with a tournament size of 4.

2.2 ECGA
Although the name suggests otherwise, the Extended Com-

pact Genetic Algorithm (ECGA) [5] can be seen to be an
EDA. The probabilistic model that is built is a Marginal
Product Model (MPM). A MPM is essentially defined by
a partitioning of all variables, i.e. a set of mutually exclu-
sive subsets. The idea is that strongly linked variables can
be placed together in marginals so that they are sampled
jointly, i.e. together, when generating new solutions.

The method employed in ECGA to configure the MPM is
quite a common one in EDA literature. A greedy algorithm
is used to optimize a statistical scoring metric, which in this
case is the Minimum Description Length (MDL) metric and
it should be minimized. The MDL metric defines a trade-off
between the quality of the fit of the estimated probability
distribution and the number of parameters that is required
for the fit. The greedy learning algorithm starts from the
univariate structure (all variables are independent) and com-
putes the decrease in MDL metric for all possible merges of
two subsets. The merge that results in the biggest decrease
in the MDL metric is chosen and the two subsets are re-
placed by their merged subset. If no merge operation exists
that reduces the MDL metric further, the greedy search pro-
cedure stops. For more details, see [5, 19].

Complete new solutions are generated by sampling the es-
timated probability distribution. In the ECGA implemen-
tation used in this paper, we generate n solutions in this
fashion. Similar to the GA, we then add these solutions to
the population and perform tournament selection.

2.3 LTGA and GOMEA
In the MPM any two variables are either fully dependent

or fully independent. In the LT any two variables may be
dependent according to some subsets, but independent ac-
cording to others because the LT structure is the result of
a hierarchical clustering that is essentially similar to the
greedy algorithm used in ECGA. However, unlike for the
MPM, when combining subsets, both the combined subset
as well as its constituent subsets are in the LT structure.
Also different from the learning procedure for MPMs, the
combining of subsets continues until only two subsets re-
main that together contain all problem-variable indices.

In the initial LTGA [18], the distance measure used to
select subsets to be combined, is based on the entropy of
subsets. For large subsets however, i.e. high up in the link-
age tree, the required counting of frequencies of instances is
costly. To improve the runtime, average linkage clustering
was recently used, which involves only looking at distances
between pairs of variables [19].

To use the LT structure, a stack is used upon which first
the complete univariate structure is pushed in a random
order. Each time two sets are combined, the joined set is
also pushed on the stack. When traversing the LT structure,
subsets are popped from the stack, meaning that the subsets
are considered in reverse merging order. LTGA moreover
makes use of optimal mixing (OM). In this paper, we set
the population size equal to the number of offspring and let
each solution undergo OM. Because each offspring is at least
as good as the parent that OM started from, for survivor
selection we focus only on the n offspring. To have the same
convergence properties as the GA and the ECGA, we can
now lower the tournament selection size to 2. Note that
the actual selection pressure is much higher as it is partly
contained in the OM variation operators.

LTGA is in the class of Genepool Optimal Mixing Evo-
lutionary Algorithms (GOMEA) and has alternatively been
identified as LT-GOMEA [19]. EAs in the GOMEA class
perform OM using a newly uniformly randomly chosen donor
parent for each subset of variables that needs to be crossed
over. If the same procedure is used as in ECGA to learn
a MPM instead of an LT, the MPM could equally well be
combined with OM in GOMEA, leading to MPM-GOMEA.
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3. FEATURED LS TECHNIQUES
Because we are taking a BBO perspective, we only con-

sider general LS techniques. Particularly, we focus on Hill
Climbing (HC), which is a well-known type of Neighborhood
Search (NS). HC considers solutions that are in a neigh-
borhood that is associated with each solution. The most
common HC variants are simple Hill Climbing (sHC) and
Steepest Ascent Hill Climbing (SAHC). In sHC (also known
as first improvement NS) the first improvement found when
traversing the neighborhood is accepted. In SAHC (also
known as best improvement NS) the entire neighborhood is
enumerated and the best improvement is selected. The HC
we consider here is actually a combination of both. For a
given subset of variables SAHC is performed among the in-
stances that are associated with these variables. However,
regarding all available subsets of variables (e.g. the mutually
exclusive subsets in a MPM), sHC is performed. In other
words, all subsets of variables are considered one after the
other. For each subset, the best instance is selected. If that
instance is an improvement over the current instance, it is
immediately accepted and the next subset is considered.

The types of subsets of variables that can be considered
are either univariate (U) (i.e. each variable separately, which,
in the case of binary variables corresponds to a “bitflipper”),
MPM or LT. The instances that are associated with a sub-
set are either considered in an Exhaustive (E) manner (all
possible instances) or in a Genepool (G) manner (only those
instances still found in the current population).

HC can either be repeatedly applied to all subsets until
convergence onto a local optimum, or only once for each
subset (indicated by HC1). The reason for this option is
that the last round in HC only serves to check whether no
further improvements are possible. In BBO however, such
an additional check can be costly.

4. COMBINATIONS OF EA AND LS
We consider running EAs (GA, ECGA, GOMEA) sepa-

rately or in MA/ELS/GLS format (GLS, ECGLS,
GOMELS), meaning that LS is applied to each solution after
it is generated, both initially and after variation.

We also consider two algorithms that could arguably be
placed equally well within the combinatorial LS community
as in the EA community. The first algorithm, Population-
based Local Search (PLS) randomly generates n solutions
and then applies LS to each solution. Initially always the
univariate structure is used because no learning has been
done yet. Next, learning is performed and a structure is
determined. HC is then applied again to all solutions, but
now following the learnt structure. This is repeated until
termination is enforced, similar to EAs. The second vari-
ant, Population-based Best Only Local Search (PBOLS),
is a combination of more traditional single-solution LS and
population-based LS. PBOLS starts similar to PLS, but af-
ter learning the very first structure, LS following this struc-
ture is then applied only to the very best solution, after
which PBOLS immediately terminates.

5. EXPERIMENTS

5.1 Optimization problems
We consider two functions, both of which need to be max-

imized and are treated as BBO problems, i.e. no partial

evaluations are possible. The first function is the mutu-
ally exclusive, additively decomposable composition of the
well-known order-k deceptive trap functions [2]. We consider
subfunctions with k = 5:

fTrap5(x) =

(l/k)−1
X

i=0

f
sub

Trap-k

0

@

ki+k−1
X

j=ki

xj

1

A

where

f
sub

Trap-k(u) =



1 if u = k
k−1−u

k
otherwise

It is commonly known that the EA needs to detect and pro-
cess the linkage groups pertaining to the deceptive subfunc-
tions in order for optimization to proceed efficiently. Specif-
ically, using univariate structures the minimally required
population size and number of function evaluations scales
up exponentially [20]. It is clear that for this problem the
MPM structure is a perfect fit.

The second function is the nearest-neighbour overlapping,
additively decomposable composition of predetermined, but
completely random subfunctions of length k, which is es-
sentially a NK-landscape [13]. This type of NK-landscape
problem where the overlap between subfunctions is exactly
defined rather than randomly defined as in traditional NK-
landscapes has the advantage that the optimum can be com-
puted using dynamic programming [13], which is important
when we want to use this type of function to determine the
minimally required resources for an EA to find the opti-
mum. We consider subfunctions of length 5 and the maxi-
mum overlap of 4 (corresponding to a shift of 1 where the
next subfunction starts), but without wraparound:

fNK-S1(x) =

l−k
X

i=0

f
sub

NK

`

x(i,i+1,...,i+k−1)

´

where f sub
NK

`

x(i,i+1,...,i+k−1)

´

is a pre-determined, but ran-
domly chosen value in [0; 1].

5.2 Setup
For both optimization problems and for problem lengths

up to l = 200 we have determined the minimally required
population size to solve each problem in 99 out of 100 inde-
pendent runs and computed the corresponding average num-
ber of required function evaluations and the average runtime
in seconds. For practical reasons, a limit of 108 function
evaluations was enforced. Termination was also enforced if
at the end of a generation all solutions had the same fitness
or the best fitness equalled the known optimal value.

5.3 Results

5.3.1 GA and GLS

In Figure 1 the results are shown for the simple GA as
well as 4 GLS variants, all of which perform HC only fol-
lowing the univariate structure. The problem sizes are kept
small deliberately because it is known that the GA with uni-
form crossover scales up exponentially on these problems.
The additional use of the univariate HC isn’t expected to
lead to much better results since no multivariate interac-
tions are considered there either. Indeed, with respect to
the number of required function evaluations no substantial
improvements are observed. On the trap functions GLS even
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Figure 1: Results for GA and GLS.

performs worse. The reason for this is that LS identifies op-
tima and suboptima for individual subfunctions but uniform
crossover has only little chance of crossing entire subfunc-
tions over to form better solutions. The probability of gen-
erating an optimal building block in one of two offspring is
even bigger if both parents are not sequences of local optima.
The trap functions however have a rather specific structure
and therefore this result shouldn’t be readily extrapolated to
count for all BBO problem solving. Indeed, when observing
the results on the overlapping NK landscapes, the situation
is somewhat reversed and the GLS variant with HC1 and
exhaustive instance enumeration performs best. The only
observable benefit of the integration with LS techniques on
both problems is a reduction in required population size,
which was only one of the three effects LS integration can
have as outlined in Section 1.5. Arguably, model-building
techniques are required to be able to observe a bigger impact
of the integration of LS techniques as a result of a multiple
of the effects as outlined in Section 1.5 coming into play.

5.3.2 ECGA, ECGLS and GOMEA

In Figure 2 the effects of using LS both univariately and
following the MPM structure on ECGA are shown. First, we
disregard the ability to solve the two problems and look only
at which variant is best. Similarly to the case of GLS, when
using the univariate structure in HC, visiting each variable
only once per application, but with an exhaustive instance
neighborhood (i.e. a true “bitflipper”) is best in terms of
minimally required number of evaluations. When following
the MPM structure in HC however, better results are ob-
tained if only the genepool instances are used. This is rather
straightforward to understand for the trap functions because
for each subfunction there is one optimum and one subop-
timum and the HC with the correct MPM structure will
effectively select the optimal instance without considering
all other possible instances. This is however not necessar-
ily directly obvious for the overlapping NK landscapes, but
the same strategy performs best. Arguably, the larger the
subsets of linked variables, the better the EA by means of
selection can already weed out instances that are of no value
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Figure 2: Results for ECGLS.

and even though there may be more interesting candidates
than one suboptimum and one optimum as is the case for
the trap functions, this number of candidates may still be
much smaller than the total number of possible instances,
which grows exponentially with the subset size and therefore
quickly leads to many more evaluations required by HC.

When considering the ability to solve the problems, Fig-
ure 3 shows the best performing ECGLS variants along with
ECGA itself. It is known that an EDA performs very well
if the probabilistic model can fit well to the structure of the
problem. For this reason the EDA can solve the trap func-
tions quite efficiently in terms of the number of required
evaluations. Moreover, the effect of noise reduction for the
sake of better model building can also be seen as the ECGLS
variants have a far smaller minimally required population
size than ECGA does. The addition of HC with the univari-
ate structure however does not lead to a reduction in the
required number of evaluations.

An EDA will perform worse than a GA with crossover if
the probabilistic model can not fit well to the structure of
the problem. The performance of ECGA on the overlapping
NK landscapes is indeed quite bad. Moreover, the addition
of univariate HC does not result in superior scalability, but
it does lead to a reduction in the required number of eval-
uations. Only if HC follows the learnt structure does the
scalability improve on the NK landscapes. Even on the trap
functions there appears to be a slight improvement. This
corroborates the positive influence of using LS to search in
a substructural manner as has been reported before in liter-
ature relatively recently [8, 9]. But the best contribution is
found in the form of optimal mixing (OM). MPM-GOMEA
is superior on both problems in terms of function evaluations
as well as computing time. On the NK landscapes it requires
only a slightly larger population size. This is already testi-
mony that the complete fusion of LS with variation operators
in the form of OM is a superior manner of combining EA
and LS. Next, we will look more closely at OM and see if
the observation of superiority holds when moving to a more
advanced form of dependency representation in the form of
the LT and further adding LS on top of that.
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Figure 3: Results for ECGA, ECGLS and GOMEA.

5.3.3 GOMEA and GOMELS

When combining LS with the full LT structure, it is clearly
inefficient and computationally intractable to use the ex-
haustive instance neighborhood. High up in the LT the link-
age groups are large and thus the number of instances for
these variables is huge. Therefore we only combine the full
LT structure with LS by using the genepool of instances.
Also, from here on we only show the best variant of HC for
each structure. Invariably, for the univariate structure this
turns out to be the exhaustive instance neighborhood with
a single visit of all variables per application. For the LT
structure it is also a single visit of the complete linkage tree,
for which results are shown in Figure 4.

In terms of required number of evaluations no improve-
ment is obtained over GOMEA when considering the addi-
tion of LS in the form of GOMELS. Moreover, when consid-
ering the LT structure to search in a substructural manner,
different from when considering the MPM structure, the re-
sults deteriorate extremely in case of the overlapping NK
landscapes. The reason for this is that in order to solve this
problem, multiple rounds are required in which the diver-
sity needs to be maintained in the population in order to
construct increasingly large parts that also appear in the
optimal solution. However, high up in the LT the linkage
groups are large; some are at least half the problem size.
Considering the genepool of instances then means consid-
ering the entire population. Out of these, for such a large
group of variables, only one or very few instances will be
really good and these will overwrite the corresponding part
in almost every solution during OM. Consequently, when
HC has finished traversing the complete LT, diversity will
be dramatically low. To compensate for this overzealous
behavior of LS, the population size has to increase enor-
mously, which is contrary to the typically expected effect of
adding LS. The number of required evaluations correspond-
ingly sky-rockets because OM itself already requires far more
additional evaluations during variation per solution. For the
trap functions diversity maintenance over multiple genera-
tions isn’t really necessary because of the innate separability
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Figure 4: Results for GOMEA and GOMELS.

of the subfunctions. As a result, the addition of LS, even
when following the LT structure, isn’t highly detrimental
to performance. An overall important conclusion however
is that LT-GOMEA without additional LS is the superior
algorithm for both problems.

Because LS on the complete LT structure is highly costly
and dangerous in solving certain problems because of ex-
treme diversity loss, we consider a crossover between LT-
GOMEA and LT-GOMELS, which we will indicate by LT-
GOM-EA/LS. In LT-GOM-EA/LS an integer k indicates
the level from which OM is performed. Any linkage group
with more than k variables will be skipped. Complementary,
HC only considers the linkage groups in the LT with at most
k variables. Because HC for small linkage groups, such as fol-
lowing the univariate structure, was always found to be best
when combined with the exhaustive instance neighborhood
and HC1, we only tested that particular combination with
k ∈ {1, 2, 3, 4, 5}. Note that for k = 0 LT-GOM-EA/LS is
identical to LT-GOMEA, or, identically, LTGA. The results
are shown in Figure 5. Although leading to a slight decrease
in population size on the trap functions, no significant de-
crease in required number of evaluations can be observed.
Furthermore, on the overlapping NK landscapes no signif-
icant reduction in population size could be found and the
required number of evaluations even increases slightly. This
is a second testimony that the complete fusion of LS with
variation operators in the form of OM is a very effective mix
of EA and LS and of exploration versus exploitation.

5.3.4 PLS, PBOLS and GOMEA

Finally, we consider pushing the fusion of LS and EA fur-
ther down the spectrum to PLS and PBOLS as explained in
Section 4. For both the MPM structure and the LS struc-
ture, the best variants for PLS and PBOLS are shown as
well as GOMEA. For PLS, in case of the overlapping NK
landscapes the HC variant was found to give the best re-
sults whereas for the trap functions this turned out to be
the HC1 variant. In both cases it was best to determine the
instances from the population. For the PBOLS variants, in
combination with MPM it worked best to use exhaustive

668



NK-S1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 25  50  100  200

Number of variables (l)

Population size (n)

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 25  50  100  200

Number of variables (l)

Number of evaluations

 0.1

 1

 10

 100

 1000

 25  50  100  200

Number of variables (l)

Number of seconds

Trap5

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 25  50  100  200

Number of variables (l)

Population size (n)

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 25  50  100  200

Number of variables (l)

Number of evaluations

 0.1

 1

 10

 100

 1000

 25  50  100  200

Number of variables (l)

Number of seconds

LT-GOMEA
LT-GOM-EA/LS

LT1,E,HC1
LT-GOM-EA/LS

LT2,E,HC1

LT-GOM-EA/LS
LT3,E,HC1

LT-GOM-EA/LS
LT4,E,HC1

LT-GOM-EA/LS
LT5,E,HC1

Figure 5: Results for GOMEA and GOM-EA/LS.

instance enumeration but for the LT neighborhood again
it was intractable to do so and thus the population was
used to determine the instances. It should be noted that
for PBOLS the difference between exhaustive and genepool
instance enumeration was almost absent on both problems.
Results are shown in Figure 6.

It becomes clear again that it may be dangerous to com-
bine the full LT structure with a deterministic LS that con-
siders all possible genepool instances. For the same reason
as indicated above, diversity is reduced dramatically. As a
result, PLS can’t solve the NK landscapes efficiently when
combined with the LT structure. When combined with the
MPM structure however, diversity loss is substantially less,
allowing multiple iterations to be performed, leading to far
superior performance on the overlapping NK landscapes.

When observing the results on the overlapping NK land-
scapes, it becomes clear that with both the MPM structure
and the LT structure, PBOLS is not efficient nor scalable
because of the large and quickly increasing population size
that is required. This is testimony of, even when only LS is
considered, the importance of having a population and mul-
tiple generations in which important substructures can come
to light and grow together when subfunctions are not as per-
fectly separated as for the trap functions. These results thus
underline the value of EAs as an approach in general.

When considering the artificial, but GA-hard and there-
fore nonetheless important, trap functions however, the most
efficient solver is not an EA, but it is PBOLS combined with
the LT structure. This indicates that if problems are indeed
separable, then LS techniques, albeit population-based for
a single generation, are superior to EA methods. However,
trap functions don’t capture all relevant properties of com-
binatorial or real-world problems. Considering then that
on the overlapping NK landscapes PBOLS and even PLS,
which already very closely resembles an EA, are strongly
inferior to GOMEA both with the MPM structure and the
LT structure and that the gain of PBOLS over GOMEA in
case of the trap functions isn’t extreme, the strength of EAs
combined with LS and model building in the form of OM,
even in a BBO setting, can’t be ignored.
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Figure 6: Results for PLS, PBOLS and GOMEA.

Finally, considering GOMEA alone, in all aspects of the
minimally required population size, the required number of
evaluations and computation time, the use of the LT struc-
ture is superior over the use of the MPM structure. The
LT can be computed efficiently and can further also be used
very efficiently in combination with genepool optimal mixing

by simply univariately randomly selecting new parents for
each linkage group in the LT. The resulting LT-GOMEA, or,
equivalently, the most recent version of LTGA can therefore
be concluded to be a very promising EA for the future.

6. DISCUSSION
This experimental study was done from a BBO perspec-

tive. The most important consequence of this is that par-
tial evaluations are not possible. An important question is
therefore whether the situation would change in a non-BBO
setting such as when considering combinatorial optimization
problems. In such problems, when making small changes to
a solution, such as moving a node from one set to the other
in MAXCUT, the effect on the quality of the solution can
be computed in O(1) time rather than requiring a complete
evaluation. For GLS and ECGLS we have seen that they
may perform better than, respectively, GA and ECGA on
one problem in a BBO setting but worse on another. If par-
tial evaluations were possible however, this could dramati-
cally change. However, GOMEA will likely maintain its rel-
ative superior position because OM essentially performs LS
operations. Especially when combined with the LT, for the
smaller linkage groups partial evaluations are therefore just
as well possible, potentially making a specific application of
GOMEA equally efficient as MA/ELS/GLS variants.

Regarding the essentially LS operations within GOMEA,
it is interesting to consider a third variant of HC that we
didn’t mention before in this paper, namely Stochastic Hill
Climbing (SHC) [7], which can be seen as a specific instance
of Stochastic Local Search [6] (SLS). In SHC, the instances
for (groups of) variables are not all tested like in sHC or
SAHC, but rather only one, or a few, possible instances are
randomly tested. If we consider testing only a single, ran-
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domly chosen instance from only those found in the popu-
lation, then population-based LS with this SHC variant is
identical to GOMEA. In other words, GOMEA can validly
be identified as a Population-based Stochastic Local Search
(PSLS) method, thereby fitting perfectly within the world of
LS techniques for combinatorial optimization. Alternatively
stated, LTGA, or, equivalently, LT-GOMEA or LT-PSLS,
is found at a crossroads between evolutionary computation
and combinatorial optimization where the former has been
infused with LS inside its variation operators and the latter
has been extended with a population and multiple itera-
tions. In either case, key to robustness across a wide range
of problems is model building, for which a new powertool is
arguably the linkage tree.

7. CONCLUSIONS AND FUTURE WORK
We have investigated the roles of local search, model build-

ing and optimal mixing in evolutionary algorithms from a
BBO perspective. Optimal mixing can be seen as an integra-
tion of local search into the variation operators of an evolu-
tionary algorithm. Such an integration was found to be su-
perior to the more common combinations of local search and
evolutionary algorithms that are often indicated as memetic
algorithms or evolutionary local search. Moreover, the use
of local search was found to be additionally beneficial when
model building is used to identify and exploit dependencies
between problem variables as is characteristic of estimation-
of-distribution algorithms. It helps reduce the population
size and noise in the data from which the models are to
be built, leading to more precise and computationally faster
model building. Moreover, we found that the more recent
approach of substructural local search that follows the de-
pendency structure of the built model, is favorable over a
univariate local search (i.e. a “bitflipper”). However, op-
timal mixing was found to be a more efficient manner of
exploiting this information still. Furthermore, moving to-
ward the other side of the spectrum where only determinis-
tic local search is performed following the structure of built
models in combination with a population was found to be
highly inefficient on a problem with overlapping subfunc-
tions but slightly more efficient than optimal mixing on a
non-overlapping additively decomposable problem.

All together, we conclude that a population-based stochas-
tic multi-stage process, reminiscent of EAs, is preferable to a
single-solution, single- or double-stage process that is rem-
iniscent of more traditional LS techniques. Furthermore,
algorithms like LTGA that use of optimal mixing (OM), are
in the middle between (traditional) evolutionary computa-
tion and (combinatorial) local search and from the results
seen so far, that is a very promising spot to be in.

In future work we shall further test the strengths of opti-
mal mixing by considering specific combinatorial optimiza-
tion problems both in a problem-specific manner as well as
from a BBO perspective.
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