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ABSTRACT 
Genetic Programming explores the problem search space by 
means of operators and selection. Mutation and crossover 
operators apply uniformly, while selection is the driving force for 
the search. Constrained GP changes the uniform exploration to 
pruned non-uniform, skipping some subspaces and giving 
preferences to others, according to some heuristics. Adaptable 
Constrained GP is a methodology for discovery of such useful 
heuristics. Both methodologies have previously demonstrated 
their surprising capabilities using only first-order (parent-child) 
heuristics. Recently, they have been extended to second-order 
(parent-children) heuristics. This paper describes the second-order 
processing, and illustrates the usefulness and efficiency of this 
approach using a simple problem specifically constructed to 
exhibit strong second-order structure.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search  

I.2.6 [Artificial Intelligence]: Learning  

General Terms 
Design, Experimentation. 

Keywords 
Genetic Programming, Heuristics, Search Space. 

1. Background 
Genetic Programming (GP) is an evolutionary computation 
method bringing together concepts from computer science and 
nature. It solves a problem at hand by using a population of 
candidate solutions, represented as chromosomes, and by 
manipulating the solutions via simulated mutation and crossover – 
while driven by selection to explore better solutions.  

Even though GP methods have been devised to work with a broad 
range of possible representations for the candidate solutions, the 
most common representation is that of a tree [1,6]. These trees are 
labeled with functions and terminals representing problem-
specific elements: functions, connectors, constants, sensors, etc. 
The actual search space, called genotype space, searched by GP is  

 

 

 

uniquely determined by the labels, and only constrained by limits 
on tree size or depth – the trees can be labeled in any arity-
consistent manner (the closure property [6]). The corresponding 
solution space, called phenotype space, depends on the 
interpretations of the labels – the interpretations provide a 
mapping from the search space to the solution space or from 
genotype to phenotype space. Somewhere in the search space, GP 
attempts to find a point mapped to the actual solution in the 
solution space, which will provide the solution to the problem at 
hand. The quality of a single point in the search space is 
determined by evaluating the mapped solution through a provided 
black-box fitness function. 

There are some important issues to consider when designing GP, 
similar to those of other evolutionary methods yet specific to GP. 
If a given solution does not have a search space point mapped into 
it, it will never be discovered. Therefore, the mapping must be 
onto. To accomplish this, in the absence of detailed information 
about the problem or solution, the search space needs to be 
enlarged (a part of the sufficiency principle [6]). This leads to 
many-to-one mappings, with large redundancy in the 
representation. To handle these problems, some properties need to 
be there, among them many-to-one mappings to the better 
solutions and proximity induced by the mapping – if two solution 
points are similar in quality, they should be mapped to from 
neighboring points in the search space [21]. 

Specifically in GP, sufficiency leads to huge redundancies, while 
often lacking the proximity. Moreover, the large search space also 
generally reduces the search efficiency [2,4]. To answer these 
challenges, a number of methods have been proposed that 
ultimately prune, or reduce the effective search space, such as 
STGP, CFG-based GP, etc. [1]. 

Constrained GP (CGP) is another such method. It allows certain 
constraints on the formation of labeled trees – constraints on a 
parent and one of its children at a time, also called first-order 
heuristics [4] (CGP also supports restrictions based on types, 
along with polymorphic functions). The constraints are processed 
in a closed search space by operators with minimum overhead [2] 
– closed search space refers to generating only valid parents from 
valid children. The heuristics in CGP can be strong, that is 
conditions that must be satisfied, or weak expressed as 
probabilities. Such local probabilities effectively change the 
density or uniformity of the GP search space, and as such it 
affects the proximity of the genotype and the phenotype. CGP has 
been proven very successful on a number of standard GP 
problems when using the strong constraints only [3,4,5]. 
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One problem facing CGP is that it requires the user to know the 
heuristics – CGP only provides means of adjusting the search 
space based on the heuristics. However, even though knowing 
proper heuristics can lead to great efficiency gains, the process of 
finding such heuristics can be very slow and inefficient [5]. 
Adaptable CGP (ACGP) was developed to automate the process 
of discovery of such useful heuristics, and the method was also 
shown to efficiently learn and apply the heuristics, as for example 
illustrated for the multiplexer problem [4].  

The idea of restricting the GP search space has a long history. 
McPhee with Hopper [20], and Burke [16] analyzed the effect of 
the root node selection on GP. Hall and Soule [18] have 
performed even more extensive study of this phenomenon. They 
concluded that the choice of the root node has a very significant 
impact on the solutions generated, and that fixing the root node 
properly amounts to limiting the search space needed to be 
searched. Daida has shown that later GP generations introduce 
little variation into the structure of the generated trees [17], 
indicating that these later generations search a smaller subspace of 
the search space. Moreover, Langdon has shown that GP typically 
searches only a well defined region of the potential search space 
[19]. Hall and Soule call these phenomena the design evolved by 
GP, which process in fact resembles top-down design strategy 
[18]. However, more needs to be done about studying the effect of 
imposing specific designs on GP, or automatic discovery of such 
designs in particular. CGP and ACGP does that, working not only 
at the root, but working locally as well. 

Estimation Distribution Algorithms (EDA) is another approach to 
deal with these design or more general structure issues at the 
probabilistic level [15], as are grammar-based methods [14] and 
semantic optimization methods [13]. These methods attempt to 
build probabilistic models, which in turn can be used to generate 
solutions. ACGP differs from EDA as it builds very local models 
(first-order), which makes it very efficient and thus effective. 
Moreover, ACGP uses two kinds of such models: global – tied to 
specific positions in a tree, and local – independent of positions in 
the tree, and ACGP uses the models within a standard GP search. 
It is more obvious to see that some heuristics near the root node 
help solving a problem, but it is surprising that very local 
heuristics can accomplish even more for seemingly complex 
problems [4]. 

Recently, the ACGP methodology has been extended to more 
complex heuristics – between parent and all of its children, called 
second order. These heuristics are much richer, able to express 
much more information. The methodology and its implementation 
have been extensively validated to ensure that not only they are 
correct but also that they operate comparably to the first-order 
methodology, for better comparison. However, the question 
whether second-order processing can be more powerful than the 
first-order has yet to be answered - each second-order heuristic is 
already processed implicitly in the first-order ACGP, by 
processing its first-order components. Our first attempts to answer 
the question using multiplexer and artificial ant indicated “no” – 
but careful problem analysis revealed that the actual explicit 
second-order structures did not differ from the implicit ones. 
Therefore, we have constructed an artificial problem with easily 
controllable strong explicit second-order structure that cannot be 
predicted from its first-order components. This paper introduces 
the ACGP second-order processing, uses the simple function to 
illustrate that “yes” indeed second-order processing is both more 
effective and more efficient.  

2. ACGP and Second-Order Heuristics 
2.1 Heuristics in ACGP 
Heuristics in Artificial Intelligence are considered to be chunks of 
information, or rules-of thumb, that can lead to some 
improvements in knowledge or in processing. In ACGP, heuristics 
are probabilities attached to certain very local labeled structures. 
First-order heuristics are probabilities of certain parent-one-child 
structures, such as the probability that the binary function ‘+’ will 
have ‘+’ as its left argument – as illustrated in Figure 1a. Second-
order heuristics are probabilities of certain parent-all-children 
structures, such as the probability that the binary function ‘*’ will 
apply simultaneously to two ‘y’s – as illustrated in Figure 1b. One 
may revert this terminology to zero-order heuristics, that is just 
label probabilities – but such probabilities are superseded by first 
order heuristics, and one may extend to higher-order heuristics 
where a node is considered with its children and their children 
simultaneously, etc. 

The heuristics are very useful in guiding the GP search. For 
example, if the structure as labeled in Figure 1b has high 
importance or usefulness, and some tree is being mutated with ‘*’ 
to label a node, then the two children of that node would have 
higher chances of being simultaneously labeled ‘y’ and ‘y’. The 
same would happen in crossover – if the first order heuristic from 
Figure 1a has high usefulness, the tree in Figure 1 is chosen for 
crossover, and the root’s left subtree is chosen as crossover node, 
CGP would favor bringing subtrees starting with ‘+’ from the 
other parent – because ‘+’ “prefers” having ‘+’ as its left child. 

 

Figure 1. Illustration of a) global first-order and b) local 
second-order heuristics. 

In ACGP, there are two kinds of heuristics. Global heuristics are 
position-specific as they provide information starting the root 
node – for example, Figure 1a is a global heuristic. Local 
heuristics are position-independent and they can be applied 
“anywhere” in the tree – Figure 1b is an illustration of local 
heuristics. 

2.2 Discovery of Heuristics in ACGP 
The building block hypothesis asserts that evolutionary processes 
work by combining relatively fit, short schema to form complete 
solutions [6].  However, small substructures cannot be easily 
evaluated. ACGP uses the assumption that building blocks, or 
structures, that occur more frequently in the fittest members 
contribute to the fitness of those solutions and are therefore fit 
building blocks. Therefore, in ACGP, the method for discovery of 
heuristics is straightforward – the heuristics are discovered by 
analyzing the best performing trees for most often occurring 
patterns-structures. This process does not take place after every 
generation as it has been shown that more time is needed for the 
emergence of such structures and to reduce conflicts between 
heuristics from different redundant representations. Instead, this 
happens after a number of generations, usually between 10 and 25 
[4], called an iteration. 

672



In addition to using multi-generation iterations, ACGP also 
adjusts its heuristics from the observed frequencies, rather than 
greedily using the frequencies as its heuristics – empirical results 
show that heuristics applied too greedily can lead to premature 
convergence into a search subspace which is incapable of 
representing the sought solution [4]. This is also due to the fact 
that GP, given its large label set, searches a space of many 
redundant representations and early heuristics tend to conflict 
between these representations. Once the search begins to converge 
to a specific solution and thus into specific representation, the 
heuristics are more reliable as a set. The slope-off method allows 
the discovered frequencies to replace a fixed part of the guiding 
heuristics (with 100% replacement this becomes completely greed 
approach). The slope-on method uses the frequencies to replace a 
growing portion of the previous heuristics, proportional to 
generation number. 

Another method used in ACGP to increase the reliability of the 
emerging heuristics is to run independent smaller-population runs 
simultaneously and to select best heuristics from the independent 
set. 

2.3 Representation of Heuristics in ACGP 
ACGP computes substructure frequencies and represents the 
heuristics in tables, eventually translated into so called mutation 
tables. Table-representation allows for indexed random access and 
thus fast retrieval of information. Moreover, ACGP separately 
maintains its global heuristics from its local heuristics. The 
minimal size for the tables is completely dependent on the size of 
the function set F, the terminal set T, and the arity of each 
function, and it is shown below for the first-order heuristics: 

 
The constant 1 is added to account for the global heuristics, which 
at the root are only maintained at the zero order. In the absence of 
any initial heuristics, such probability tables are initialized 
uniformly for every possible heuristic. The heuristics can also be 
initialized non-uniformly using the input interface. When ACGP 
analyzes the heuristics, it counts the frequencies for building 
blocks appearing in the fittest population members, and adjusts 
the probabilities of those heuristics after each iteration according 
to either slope-on or off schedule. The heuristics discovered in 
ACGP are used in crossover, mutation, and a new operator, 
regrow – a reinitialization operator used by ACGP to start each 
new iteration. In GP, generations build on top of each other. 
However, the search also converges into some subspaces. When 
ACGP extracts its heuristics at each iteration, it prefers to 
reinitialize the population according to the new heuristics in order 
to allow more exploration using the newly discovered heuristics, 
leading to better overall performance [4]. 

The newly discovered heuristics effectively change the space 
being search by GP – the search space becomes non-uniform, or 
the proximity between genotype and phenotype is dynamically 
adjusted. As shown before, this results in much more efficient 
search while examining smaller number of trees [4,5].  

Recently, ACGP expanded the heuristic analysis and methodology 
to consider second-order heuristics, as shown in Figure1b. 
However, this also leads to more overhead both in time and space. 
The main reason is that the number of heuristics grows 

exponentially with increasing order. The equation below shows 
how many second-order heuristics are needed. In this case, the 
global heuristics are truly second order and thus we multiply the 
global factor rather than add. Moreover, function arity is in the 
exponent to account for all potential children combinations. 

 
For a simple problem illustrated here, with 4 binary functions, 3 
variables and 11 constants, the number of heuristics computed 
from the above equations grows from 162 for first order, to 2592 
for second order, and it would grow to about 1.37x107 for third 
order if implemented. 

Another important ACGP property is that it includes tree size in 
determining the best trees from the population when it comes to 
counting heuristics. This feature was added to dampen heuristics 
coming from tress unnecessarily large for their fitness – ACGP 
uses two-key sorting, the first key is the fitness, while the second 
key is tree size and it applies whenever two trees are in an 
equivalence class based on similar fitness. Alternatively, ACGP 
can also skip counting subtrees which have not contributed to 
fitness evaluation. 

3. Empirical Illustration 
3.1 Empirical Problem and its Expected 
Heuristics 
Every second-order heuristic can be implicitly constructed from 
its first-order components, and thus every such second-order 
heuristic is already processed in the first-order system. For 
example, assume a problem where binary multiplication is 
discovered to apply to nothing but x as its left child, and nothing 
but y as its right child. Therefore, using just first-order processing, 
multiplication will always select x as its left child and y as its 
right child, and therefore will select x, y as its children – a second-
order structure. Therefore, to compare first-order processing vs. 
second-order processing we need a function where at least some 
second-order structures cannot be implicitly processed when 
running first-order ACGP. WE also want to be able to modify the 
function easily to weaken the difference between implicit and 
explicit second-order heuristics. The initial function chosen is the 
three-variable parabolic bowl3 = x*x + y*y + z*z.  

The second-order structure apparent in this problem is that 
multiplication has to apply to same-variables simultaneously, a 
fact which cannot be implicitly constructed from observing just 
one child at a  time. The bowl3 function has two basic minimal 
solutions, as seen in Figure 2. Adjusting for different permutations 
at the leaves, there are 6 permutations of the left tree and 6 
permutations of the right tree, giving 12 minimal solution trees.  

 

Figure 2  x2 + y2 + z2 represented as two different trees. 

By analyzing the minimal solution trees (and their permutations), 
we can see that even though the two trees are different in top-level 
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structure, the local (not root) second-order heuristics are exactly 
the same in both:  

‘*’ applies to same-variables simultaneously, and  

‘+’ applies to two ‘*’ simultaneously.  

While the latter heuristic can be deduced from first-order 
heuristics (‘+’ applies to ‘*’ on the left, and separately ‘+’ applies 
to ‘*’ on the right), the former heuristics cannot be possibly 
constructed from first-order structures and thus will require 
extraction and processing of second-order heuristics to possibly 
improve over what first-order heuristics could accomplish. 
Therefore, these are perfect heuristics to determine if ACGP can 
improve while operating on second-level structures, over first-
order structures.  

As mentioned, the global second-order heuristics, on the other 
hand, are different in the left and the right trees:   

‘+’ applies to ‘*’ and ‘+’ in the left subtree, and 

 ‘+’ applies to ‘+’ and ‘*’ in the right subtree.  

Because the heuristics are opposite, there will be a conflict when 
combining global heuristics from multiple trees (some trees can 
come from the left family, others from the right family), and we 
can expect the initial search for heuristics to suffer until one of 
these families, or representations, takes over the population while 
using heuristics to further speed up this take-over at that time. 

To add some level of complexity to this artificial problem, we 
enlarged the function to four binary operators {+,*,/,-}. We also 
enlarged the terminal set to fourteen elements by including, in 
addition to required {x,y,z}, eleven integer constants between   -5 
and 5. None of these additional functions or terminals is needed in 
the optimal solution.  

3.2 Experimental Setup 
Unless otherwise noted, all experiments were conducted as 
follow:  

Target Equation: x*x + y*y + z*z 

Function set: {+, -, *, /} (protected divide) 

Terminal set: {x, y, z, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5} 

Population size: 500  

Generations: 500 

Operators: crossover 85%, mutation 10%, selection 5%, 
regrow 100% at each iteration 

Number of independent runs: 30  

Fitness: sum of square errors on 100 random data points 
in the range -10 to 10 

Iteration length: 20 generations  

When tracing fitness, the best solution from the 30 independent 
runs was averaged. 

3.3 Problem Solving Results  
The first experiment was to compare the learning curves, that is 
the quality of the best solution found per generation, for a 
standard GP run, called Base, and for two ACGP runs while 
learning heuristics and applying them by updating 50% of the 

previous heuristics with the currently observed frequencies. The 
results are presented in Figure 3. 

As seen, the GP-base run cannot solve the problem with better 
than about 10% quality. However, both ACGP runs can raise this 
quality to about 60-70%. On the other hand, there is little 
advantage in processing second-order heuristics here, while – as 
we already know - this problem has some second-order heuristics 
which cannot be constructed from their first-order components. 
The apparent reason for this, and for ACGP’s inability to solve the 
problem beyond 70%, lies in the heuristics being applied too 
greedily – as previously noted, the early heuristics are not reliable 
as some tend to be missing and others can come from conflicting 
representations [4]. Therefore, in the next experiment, we allow 
the heuristics to change slowly at the beginning. 
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Figure 3.  Comparison of GP-Base, ACGP with 1st order and 
2nd order heuristics. Training slope-off with 50% update. 

Another worthy observation from this experiment is that the 
population reinitialized with the regrow operator at each iteration 
tend to eventually provide better quality solution on the first 
generation (of a given iteration, the “dips” in the figure), due to 
random sampling not from the original uniform search space but 
from the discovered non-uniform space. 

The second experiment followed the first one except that the 
heuristics were updated less greedily – using the slope-on method. 
The results are presented in Figure 4. As seen, ACGP with first-
order heuristics cannot solve the problem better than with about 
75% quality. On the other hand, ACGP with second-order 
heuristics apparently is able to discovered the strongly present 
second-order structure and solve the problem with 100% quality 
after about 10 iterations.  
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Figure 4.  Comparison of GP-Base, ACGP with 1st order and 
2nd order heuristics with training slope-on.  
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Another observation from Figure 4 is that even though both 
ACGP runs can clearly outperform the GP run performing 
uniform search, this advantage does not exists in the initial few 
iterations. This fact is better illustrated in Figure 5. As seen, all 
three runs are identical in the first iteration – before any heuristics 
are discovered. Moreover, it takes the first-order ACGP three 
iterations to outperform the standard GP. The reason is most 
likely the fact that initially there are the two competing 
representations with different global (root level) heuristics for the 
second-order case and different local heuristics for ‘+’ for the 
first-order heuristics case, as speculated before. Once the process 
starts “preferring” one of the representations, possibly due to 
random genetic drift, the process feeds back on this and further 
reinforces the representation, leading to quick and dramatic 
improvements. 
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Figure 5.  The first 5 iterations from Figure 4. 

All previous experiments started with no heuristics (uniform 
operator search) and then attempted to improve the runs while 
discovering the heuristics. This is why the first iterations are the 
same for all three cases in Figure 5. However, by analyzing the 
problem we already know what the sought heuristics should be, 
both the first order and second order. Therefore, the next 
experiment was designed to trace the system’s behavior when the 
heuristics are provided up front – that is when the search is 
completely non-uniform for ACGP from the beginning, while 
using the ideal heuristics from one representation only to avoid 
conflicts.  
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Figure 6.  Comparison of GP-Base, Strong 1st Order and 
Strong 2nd Order Heuristics on 200 generation, no iterations. 

The results are presented in Figure 6. There are no iterations here 
as the ACGP runs are conducted with the ideal heuristics already 
entered up front – ACGP allows entering first-order heuristics 
from the interface but the second-order heuristics were entered by 
modifying the code. As seen, following the early speculations, this 
problem has very strong set of heuristics which if already known 
can dramatically speed up the problem-solving process. Of course, 
ACGP with second-order heuristics outperforms ACGP with first 
order only – it requires only about 10 generations to consistently 
solve the problem with 100% quality while the other requires 
about 35. 

This first experiment demonstrated the ACGP can both discover 
first and second-order heuristics leading to performance gains 
when compared generation to generation. However, if the 
processing overhead is too complex, this may not necessarily lead 
to better efficiency. To answer the question, we redraw the results 
from Figure 4 on time rather than generation scale. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

Fi
tn
es
s

Seconds

Bowl3  Learning Curve
population = 500, generations = 500

2nd OH

1st OH

Base

 

Figure 7.  Comparison of Base, 1st Order and 2nd Order 
Heuristics on a Time Scale. 

The results are illustrated in Figure 7. The apparent reinitialization 
dips cannot be easily seen due to averaging on time scale. The 
graph clearly shows that even when taking processing complexity 
into account, ACGP still provides a clear advantage over GP. 
Moreover, ACGP with the more-complex second-order heuristics 
still outperforms ACGP with only first-order heuristics. 

These speedups of course result from finding better solutions in 
fewer generations, as seen in Figure 4. However, there is more 
into the story. When running with better heuristics, the tree sizes 
tend to be smaller due to the algorithm learning to avoid 
unnecessary and non-contributing subtrees. This can in fact 
amplify the efficiency gains.   

Table 1.  Average tree structure for Base, 1st Order and 2nd  
Order Heuristics. 

Average 
Best Tree 

Size 
Best Tree 

Depth 
Execution 

Time 

Base 728.40 19.43 347.6 

1st OH 123.67 10.37 44.70 

2nd OH 123.87 11.40 65.67 
 

Table 1 summarizes the best tree complexity in the three 
experimental cases. It indeed shows that the trees created using 
the first-order order and second-order heuristics contain fewer 
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nodes and are shallower than the trees explored in the standard 
GP. 

So far we have demonstrated that ACGP does indeed process 
second-order heuristics and does it very efficiently. The heuristics 
can be provided up front or discovered in iterations. However, the 
problem used so far was designed with very strong second-order 
structure in order to clearly validate ACGP’s capability to 
discover and process such information. Yet, most practical 
problems are likely to exhibit some but not so profound second-
order structure.  

Therefore, the next experiment was designed to test ACGP on 
such cases. In this experiment, we modified the bowl3 equation as 
follows: bowl3ext = x*x + y*y + z*z + x*y + x*z + y*z. This 
problem still has very explicit first order structure, but the explicit 
second-order structure is very similar but not equal to the implicit 
second-order structure processed with first-order mechanisms. For 
example, the first-order heuristics for the multiplication are 
exactly the same as before, and thus the implicit seond-order 
heuristics are the same as before – but now they are the same as 
the explicit second-order heuristics. Figure 8 illustrates runs with 
this modified bowl3ext. As seen, ACGP has harder time 
discovering the heuristics now, and there is no apparent difference 
between processing explicit and implicit second-order heuristics. 
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Figure 8.  Comparison of Base, 1st Order and 2nd Order 
Heuristics with Training Slope on for an extended Bowl3 

equation. 

3.4 Discovered Heuristics 
Another way of analyzing ACGP’s performance is to look at the 
actual heuristics discovered after all iterations and compare them 
against the speculated values assumed from problem analysis. 

Table 2 illustrates the first-order heuristics discovered by ACGP 
running in the first-order mode. The results are very close to what 
was speculated in Section 3.1. All heuristics start uniformly (no 
apriori information). The multiplication function can easily 
discover that it needs to apply mostly to the variables (about 72% 
combined out of needed 100%). The addition function also 
discovers that it should apply mostly to ‘*’ and also allow 
association, but it clearly still cannot distinguish between the two 
solution families as illustrated in Figure 2 (‘+’ is both left and 
right associative while only one of them is sufficient). The reason 
for this confusion is that except for the ‘+” association, the two 
families have identical heuristics making it hard to distinguish 
between them. 

The global zero-order fact that ‘+’ should label the root node was 
also discovered easily. It is important to note that due to mutation 
and slowly updated rather than greedily computed heuristics, and 
some introns usually present in the trees, 100%-correct final 
heuristics are not expected. 

Table 2.  First-order heuristics discovered. Root’s heuristics 
are zero-order. 

1st Order Heuristics 

Heuristic Initial Final 

‘*’ 

Left arg 
X 0.056 0.2289 

Y 0.056 0.2426 

Z 0.056 0.2403 

Right arg 
X 0.056 0.2323 

Y 0.056 0.2489 

Z 0.056 0.2087 

‘+’ 

Left arg 
‘*’ 0.056 0.4796 

‘+’ 0.056 0.2171 

Right arg 
‘*’ 0.056 0.4168 

‘+’ 0.056 0.2410 

Root ‘+’ 0.056 0.7669 

Average of all other heuristics 0.056 0.0371 
 

If we estimate the second-order heuristics from the available first-
order heuristics, our estimate will be lower than needed to capture 
the heuristics actually present in the bowl3 equation. The first-
order heuristics for the function ‘*’ will estimate nine potential 
second-order heuristics {x * x, x * y, x * z, y * x, y * y, y * z, z * 
x, z * y, z * z}. However, we already know that bowl3 has only 3 
useful second-order heuristics for ‘*’: {x * x, y * y, z * z} and 
will suppress the other six heuristics. Table 3 summarizes the final 
second-order heuristics computed for ‘*’ – again, the total for the 
three heuristics come in the 74% range out of the actual 100%. 

 

Table 3.  Second-order heuristics summary for ‘*’. 

Multiply Heuristics 

Heuristic Initial  Final 

‘*’ 
X X 0.0031 0.2545 

Y Y 0.0031 0.2368 

Z Z 0.0031 0.2436 
Average of all other 

heuristics 
0.0031 0.0008 

 

A similar discussion can be made regarding the second-order 
heuristics for ‘+’. The three preferred heuristics {‘*’ ‘+’ ‘*’, ‘*’ 
‘+’ ‘+’, ‘+’ ‘+’ ‘*’} are found after the iterations. Moreover, we 
can see here that using second-order heuristics ACGP is able to 
put preference on left-associative ‘+’ – ACGP with first-order 
heuristics was not able to make this distinction as seen in Table 2.  

The only dominant heuristics found for division and subtraction 
are a few heuristics that have no impact on the evaluation of the 
candidate solution. These neutral heuristics are division sub-trees 
that evaluate to 1 or subtraction sub-trees that evaluate to 0. An 
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example of one of these heuristics would be (5 / 5). In other 
words, ACGP was able to discover that if these extraneous 
functions are present, they should evaluate to values easily 
neglected by the evaluation. 

Table 4.  Second-order heuristics summary for ‘+’. 

Addition Heuristics 

Heuristic Initial  Final  

‘+’ 
‘*’ ‘*’ 0.0031 0.3110 

‘*’ ‘+’ 0.0031 0.0688 

‘+’ ‘*’ 0.0031 0.1289 
Average of all other 

heuristics 
0.0031 0.0015 

 

4. Conclusions 
We have presented here the ACGP methodology for processing 
and discovery of useful second-order heuristics. This is an 
extension to the previously introduced and illustrated first-order 
ACGP, which was shown to improve search efficiency 
considerably on a class of standard problems. This paper 
demonstrates that if very strong second-order heuristics are 
present, ACGP is able to process them and also to discover them, 
does it very efficiently, and the discovered heuristics are similar to 
what one would expect by carefully analyzing the problem 
solution.  

The paper also illustrated that if a problem does not have explicit 
second-order structure, ACGP running in first or second-order 
mode is the same – there are always implicitly constructed 
second-order structures. This is very important because it means 
that, in the absence of any information on second-order structures, 
it is not necessary to run ACGP in both modes – the second-order 
mode is at least as powerful regardless what heuristics are present 
in the domain. This feature needs to be validated with more 
experimentation, but it was already observed on other problems as 
well. 

Of course, some of the local heuristics are context-specific, that is 
they should be different in different subtrees. ACGP relies on the 
simplicity of its completely local heuristics for its efficiency, but 
it is possible to provide some context-sensitivity – we hope to 
investigate this in the future. 

The paper  used a simple artificial problem allowing very detailed 
analysis of the difference between explicit and implicit second-
order structures, for the sake of illustration the method’s 
effectiveness and efficiency. The next step will be to move on to 
standard test or real world problems. If anything, ACGP can at 
least be used to predict the existence of second-order structures 
beyond those implicit ones. So far, we have concluded that the 11 
multiplexer and the SantaFe trail problems do not have any such 
explicit second-order structures. If second-order processing 
proves beneficial on some real life problems, the next step will be 
to extend the method to higher-order structures.  
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