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ABSTRACT

This paper focuses on the analysis of estimation of distri-
bution algorithms (EDAs) software. The important role
played by EDAs implementations in the usability and range
of applications of these algorithms is considered. A survey
of available EDA software is presented, and classifications
based on the class of programming languages and design
strategies used for their implementations are discussed. The
paper also reviews different directions to improve current
EDA implementations. A number of lines for further ex-
panding the areas of application for EDAs software are pro-
posed.

Categories and Subject Descriptors

G.1 [Optimization]: Global optimization; G.3 [ Proba-
bilistic methods]

General Terms
Algorithms

Keywords

Estimation of distribution algorithms, probabilistic mod-
eling, software, programming, virtual environment, mobile
computing

1. INTRODUCTION

It is acknowledged that software availability contributes to
the reproducibility of experimental results and the dissemi-
nation of research achievements. Advances in evolutionary
computation (EC) are potentiated when the implementa-
tions of the introduced algorithms are made publicly avail-
able by the authors. Additionally, in order to boost practical
applications of evolutionary algorithms, software developers
should consider the conception of general and flexible soft-
ware. Implementations of evolutionary algorithms will be
more valuable if they could be applied to optimization prob-
lems arising in different contexts, and if they are intuitive
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and reusable, contributing to save the time of users less fa-
miliarized with EC theory.

One of the most active areas in EC research is the study
of estimation of distribution algorithms (EDAs) [32, 45, 55].
Since its conception, research on EDAs has moved on multi-
ple fronts. From their initial application to relatively simple
binary problems, applications of EDAs have been extended
to difficult non-binary discrete, continuous and mixed prob-
lems [36, 57]. Different variants of EDAs have been pro-
posed for multi-objective [8, 59, 84] and dynamic functions
[30]. Theoretical research on EDAs has also experienced a
rapid development. However, since the use of probabilistic
graphical models (PGMs) defended by EDAs developers is
a fundamental shift in traditional research on evolutionary
algorithms, a rapid embracement of this new methodology
by the community of EC users is not expected. A related
problem is that EDAs implementations are, in general, more
complex than evolutionary algorithms based on the use of
simple or heuristic genetic operators. Therefore, the avail-
ability of EDA software is very important for expanding the
use of these algorithms.

The first part of this paper reviews available implemen-
tations of EDAs, analyzing their main characteristics and
proposing a classification of these implementations that could
be useful to users and developers. The paper does not survey
the different classes of EDAs. For such type of analysis, the
interested reader is suggested to consult [32, 55]. The second
part of the paper focuses on the analysis of the features that
could enhance the applicability of EDAs implementations.
Although there are several software packages that provide
implementations of EDAs, in some cases, the source code of
the programs is not available. In other cases, the programs
are only available upon request from the authors. The paper
focuses on the analysis of those packages whose source code
is available from internet.

The paper is organized as follows: In the next section,
available EDA implementations are reviewed. Algorithms
are grouped into three classes according to the program-
ming language they have been implemented: C and C++
programs are grouped in the first class, Matlab programs in
the second, and all implementations in any other language
are grouped in the third class. In Section 3, a classification of
EDA implementations according to the design strategy used
to program the algorithms is introduced. Section 4 proposes
several ways in which EDAs implementations could be en-
hanced. Section 5 discusses a number of ideas related to
EDA implementations that could expand the application of



these algorithms. The conclusions of our paper and some
lines for future research are given in Section 6.

2. REVIEW OF EDA IMPLEMENTATIONS

The analysis of the available software has shown that most
implementations have been programmed in C++ and Mat-
lab. This fact has motivated the classification of the EDA
software presented in this section. The surveyed software are
summarized in Table 1, that describes the software identi-
fiers, the papers in which they have been presented and the
programming language they have been implemented. In Ta-
ble 2, the web pages from which one or more of the EDA
implementations can be downloaded are listed.

2.1 C and C++ implementations

The first implementation of the extended compact genetic
algorithm (ECGA) [24] was presented in [34]. It allows the
user to define its own objective function. This implementa-
tion does not use advanced features of the C+4 language
such as templates and inheritance. Therefore, it makes eas-
ier to the user to modify the code and plug-in his own ob-
jective function using the C programming language alone.

An implementation of the y-ary ECGA in C++ was in-
troduced in [16]. x-ary ECGA extends the application of
non-overlapping marginal models to non-binary problems of
x-ary cardinality. The source code is also an extension of
the original binary-coded ECGA and its previous implemen-
tation in C++ [34, 35].

Identifier Reference Language
MBOA, AMBOA [49, 48] C++
BOA [53, 51, 52] C++
Tree-EDA [58] CH++
RM-EDA (84] C++,M
Hybrid-EDA [83] C++,M
Mateda [65, 67] M
ECGA [34, 35, 69, 69, 70] | C++,M
LiO [40] Java
Evoptool [79] C++
AMALGAM [7] C
ParadisEO [11, 77] C++
gtEDA [29] M

Table 1: Description of surveyed EDA software, im-
plemented in C, C++4, Matlab (M) and Java.

Different implementations of tree-based EDAs [4, 56] are
available. The software presented in [58] is available for
download. A simple implementation of the Bayesian op-
timization algorithm (BOA) [52, 53] is presented in [50].
A more sophisticated implementation incorporating decision
graphs is presented in [51].

The evolutionary optimization tool (Evoptool) [79] is an
optimization toolkit that implements different evolutionary
optimization algorithms. EDA implementations includes uni-
variate EDAs such as compact GA (cGA) [25], population-
based incremental learning (PBIL) [3], and UMDA [45]. Im-
plementations of bivariate EDAs include MIMIC [14] and
COMIT [5]. Additionally, different versions of Markov net-
work based EDAs [64, 73, 75] are also implemented. They
include the univariate and bivariate versions of DEUM [74,
76]. External algorithm implementations can be wrapped
through patches. Using this procedure, Evoptool includes
the implementation of the simple BOA [50]. Evoptool also
includes several benchmark problems.
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ParadisEO [11, 77] is a white-box object-oriented software
framework dedicated to the flexible design of metaheuristics
for optimization problems of both discrete and combinatorial
nature. It contains general classes that allows the definition
of generic discrete and continuous EDAs.

The mixed BOA (MBOA) [49] and the adaptive mixed
BOA (AMBOA) [48] are conceived for the solution of mixed
discrete-continuous problems. In contrast to MBOA, AM-
BOA copes with improved performance in the continuous
domain due to variance-adaptation. The C++ implementa-
tions of these two EDAs are parallel.

Implementations of hybrid EDAs that use genetic opera-
tors probabilistic modeling are also available. A C++ im-
plementation of an EDA with guided mutation is proposed
in [83]. The guided mutation is proposed by incorporating
the location information (the actual position in the search
space) and the global statistical information, which is rep-
resented by a univariate marginal distribution model [83].

There are not many implementations of multi-objective
EDAs. A C++ implementation of the regularity model-
based multiobjective estimation of distribution algorithm
(RM-EDA) [84] for continuous problems is available. RM-
EDA is based on a regularity of the Pareto set in the decision
space. At each generation, RM-EDA models a promising
area in the decision space by a probability distribution whose
centroid is a 1-D piecewise continuous manifold. ParadisEO-
MOEO [33] is an extension of ParadisEO to multi-objective
problems. It is a general-purpose software framework dedi-
cated to the design and the implementation of evolutionary
multiobjective optimization techniques. EDAs can be also
implemented for this multi-objective module.

The C implementation of the adapted maximum-likelihood
Gaussian model iterated density estimation evolutionary al-
gorithm (AMaLGaM-IDEA) [7] includes different approaches
to the solution of continuous optimization problems. In
AMaL.GaM-IDEA, the factorizations of the Gaussian distri-
bution is either not factorized, factorized using a Bayesian
factorization that is learned in a greedy fashion, or factorized
using the univariate factorization [7].

2.2 Matlab implementations

An interface for Matlab of the C+4 implementation of the
x-ary extended compact genetic algorithm is described in
[69]. The source code is an extension of the original binary-
coded ECGA and its previous implementation in C++ [34,
35]. A pure Matlab implementation of ECGA is presented
in [70]. The implementation allows the user to modify the
fitness function and run eCGA on user-defined problems.

A general toolkit for estimation of distribution algorithms
(etEDA) is presented in [29]. gtEDA implements a num-
ber of univariate and bivariate discrete EDAs. The software
implements a number of toy problems and allows the user
to test his own objective function. No multivariate EDA is
included in the current implementation. A Matlab imple-
mentation of the RM-EDA [84] is also available.

Mateda2.0 [65, 67] implements single and multi-objective
discrete and continuous optimization problems using EDAs
based on undirected and directed probabilistic graphical mod-
els. It is conceived as an open package to allow users to in-
corporate different combinations of selection, learning, sam-
pling, and local search procedures. Additionally, it includes
methods to extract, process and visualize the structures
learned by the probabilistic models.



2.3 Other language implementations

Among EDA implementations in Java is the LiO pack-
age [40] which includes GAs, particle swarm optimization
(PSO) methods and EDAs implementations. The LiO li-
brary was initially designed to avoid implementing pieces
of code which are frequently used when solving problems
by means of metaheuristics and EC. In this sense, LiO can
be seen as a source of objects necessary to build search al-
gorithms [40]. LiO includes the implementation of several
univariate and multivariate EDAs and allows the creation of
generic EDAs.

3. APPROACHES TO EDA IMPLEMENTA-
TION

From the analysis of the software presented in the previous
section three different approaches to the implementation of
EDAs are identified:

e Implementation of a single EDA.
e Independent implementation of multiple EDAs.
e Common modular implementation of multiple EDAs.

Many of the available implementations fall in the first class
[34, 35, 70]. This type of software is usually conceived to
test a new EDA or extend its current scope of application.
The flexibility of these implementations to be combined with
other EDAs is, in most of cases, rather limited.

To the second class of implementation belong software
packages that provide independent implementations of dif-
ferent EDAs [29, 79]. Usually, other type of evolutionary al-
gorithms are also included in these implementations. When
the algorithms are independently implemented, none or few
common programming code is shared by their implementa-
tions. This approach is particularly suitable when the set
of implemented EDAs is very diverse. In some cases, the
software allows the algorithms to be compared in similar
conditions, (e.g. function testbeds and experimental bench-
marks are provided).

The third class of implementations groups programming
code conceived to take advantage of the modular structure
shared by most of EDAs [11, 40, 66]. In this approach, the
EDA components (e.g. learning and sampling methods) are
independently programmed. EDA implementations can be
then constructed as a particular combination of the compo-
nents. Modularity also allows the conception and validation
of new EDA proposals that combine different components.

A paradigmatic example of this type of implementations
is LiO, in which, from the point of view of design, a re-
source is an object whose behavior is known, and is thought
to be as independent as possible from the rest of the re-
sources. Since most of EDAs share a common scheme of
functioning, differing only on the probabilistic model used
to learn the features of the population, they are all imple-
mented in LiO by one class. The only exception is the PBIL
algorithm whose incremental learning step is different from
most EDAs.

4. ENHANCING EDA IMPLEMENTATIONS

There are several ways current EDAs can be enhanced
[68, 71]. This section focuses on general implementation
enhancements with a direct impact in the application of the

algorithms. The following is a list of ideas that could be
beneficial when incorporated to EDAs software.

e Parallel implementations.

e Automatic methods to compute the population size.
e Support for statistical analysis of experimental results.
e Predicting the time of convergence for the algorithm.
o Restart strategies based on different search situations.
e Advanced visualization of the EDA evolutionary path.

e Mining of the probabilistic models and information ex-
traction from the EDA search.

Although much work has been devoted to parallel EDAs
[15, 37, 38, 41, 47], only a few of the available EDAs im-
plementations are parallel [11, 47]. The use of parallelism is
critical for more efficient algorithms since available compu-
tational resources are increasingly parallel. However, since
there exist different alternatives for EDA parallelization [15,
38, 42] the choice for the type of parallelization to use should
be clearly stated. Furthermore, two or more forms of paral-
lelism could be incorporated to the programs.

There are several papers that theoretically and empirically
analyze the population sizes required by EDAs for conver-
gence [54, 61, 82]. Nevertheless, with a few exceptions [47],
EDAs implementations do not provide the user with auto-
matic procedures to compute the critical or suggested popu-
lation size. Computation of the critical population size using
the bisection method or other procedures should be incorpo-
rated as a tool to validate the EDA behavior and investigate
their scalability. Similarly, support for statistical analysis of
the experimental results, i.e. implementation of statistical
tests or summaries of the algorithms results that could be
easily used as input for statistical analysis software should
be part of EDA implementations.

Stop criteria used for most of EDAs implementations mainly
refer to the number of generations, reaching an a priori-set
fitness value or producing a very homogeneous population.
Some modular EDA implementations [65], allows the user to
implement stop criteria using historical information about
the EDA search. However, there are other studies that pro-
pose predictive models of the EDA behavior [19, 22, 44, 46,
54]. At least for certain classes of functions, these predictive
models could be employed to detect the stagnation and con-
vergence of the algorithms. It will be very useful that EDA
implementations could incorporate this type of predictive
models for intelligently setting stop conditions or providing
the user information about the current state of the search.
For example, using some of these models, the EDA software
could provide, at each generation, which is the probability
that the algorithm will improve the current best fitness value
in the next generations.

When stagnation of the search has been detected, restart
strategies are recognized as a relatively efficient procedure
to continue the search. Restart strategies based on differ-
ent search situations have been included in some EDA im-
plementations [7, 83]. Nevertheless, they should be incor-
porated to other EDA software as a way to enhance the
robustness of EDA applications.

Visualization of different aspects of the EDA search can
contribute to a more flexible design of the applications and



Reference Language | Web pages
149, 48] C++ http://jiri.ocenasek.com/#Download
[53, 51, 52, 58] C++ http://medal.cs.umsl.edu/software.php
[83, 84] C++,M | http://cswww.essex.ac.uk/staff/zhang/code
[65, 67] M http://www.sc.ehu.es/ccwbayes/members/rsantana/software/matlab/MATEDA html
[34, 35, 69, 69, 70] C++,M http://illigal.org/category/source-code/
[40] Java http://www.dsi.uclm.es/simd/SOFTWARE/LIO/
[79] C++ http://airwiki.elet.polimi.it /index.php/Evoptool:_Evolutive_Optimization_Tool
[7] C http://homepages.cwi.nl/bosman /source_code.php
[11, 77] C++ http://paradiseo.gforge.inria.fr/

Table 2: EDA software available from internet.

to identify previously unknown information of the problem
domain. Most of EDA implementations support only basic
visualization of the algorithms behavior. It is very common
to plot the best and average fitness of the population at
each generation. Nevertheless, visualization of other type
of information (e.g. the evolution of the graphical models
structure) should be incorporated to the software.

One of the most promising EDA applications is the auto-
matic extraction of problem information from the analysis
of the information produced during the EDA search [26, 27,
66]. In some real-world problems, the information extracted
from the EDA evolution could be as important as the op-
timization results. In [65], methods to automatically find
most frequent substructures in the graphical models learned
by EDAs along the evolution are implemented. One dif-
ficulty associated to the implementation of such methods,
is that the relevance of the information extracted from the
models can be very problem dependent. Nonetheless, con-
fronting the user with regularities identified and extracted
from the models could contribute to effective knowledge dis-
covery.

There are other areas [57, 68] where established and cur-
rent research on EDAs could be translated into novel fea-
tures of the EDA implementations. Such features could im-
prove the efficiency of EDAs, enhance the EDA user’s expe-
rience, and provide valuable information about the charac-
teristics of the problem.

S. EXPANDING THE SCOPE OF EDA AP-
PLICATIONS

This section analyzes some research areas where the im-
plementation of EDAs could lead to expanding the applica-
bility of these algorithms. Among these research areas are
the following:

e Make EDA implementations available in commonly used

scripting programming languages.

Add EDA implementations to problem-domain spe-
cialized optimization packages.

Take profit of the probabilistic modeling resources im-
plemented in R and Matlab to investigate novel EDAs
variants.

mobile telephones and other portable devices.

Study potential applications of EDA implementations
in virtual environments.

There are three main reasons that point to the conve-
nience of implementing EDAs in scripting languages such

Determine the feasibility of implementing EDAs in PDIs,
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as Perl [80] and Python [31]. The first reason is that these
languages serve to interface many different devices, proto-
cols, applications, and file formats [43], allowing to address
diverse optimization problems, possibly implemented in dif-
ferent languages. The second reason is that there are several
modules already implemented in these scripting languages
that could be reused for the implementation of EDAs, in
particular modules related with EAs [6, 17, 43, 72] and ma-
chine learning techniques [1, 23, 72, 81]. Finally, and per-
haps the most important reason, is that Perl and Python
are the languages of choice for many scientific communities.
EDAs implemented in these languages could be tested in a
wide variety of real-world optimization problems.

EDAs have been applied with good results to a variety
of domains. These applications have followed, in most of
cases, a single case approach. One example of these do-
mains is Bioinformatics, where an impressive record of EDA
applications have been reported [2]. However, none of the
specialized packages used to solve problems from Bioinfor-
matics incorporates an EDA module. Focusing on the imple-
mentation of generic EDA modules, that can be applied to
different types of problems with minor changes and within a
specialized programming environment can be worth in terms
of the popularization of these optimization algorithms.

Software such as R [13] and Matlab [78] provide sophis-
ticated implementations of probabilistic modeling and ma-
chine learning methods. The available probabilistic mod-
eling algorithms can be used to ease the conception and
validation of different EDA approaches. This is one of the
pillars of the MATEDA implementations [65, 67]. The same
idea can be developed using R or any other software for
which a library of statistical and machine learning methods
is available.

Some of the technological developments of recent years
include the emergence of new powerful computational plat-
forms such as graphical cards, cell broad band engines,and
the popularization of mobile computing devices such as mo-
bile telephones, PDI and other portable devices. These plat-
forms are candidates for the implementation of EDAs and
other EAs. The challenge is the identification of the target
problems. There are many common day tasks that involves
the solution of an optimization problem. Other possible do-
mains of applications for EDAs would be image evolution or
gaming. Future research on EDA implementations should
evaluate the most appropriate programming solutions for
the most recent computational platforms.

Some recent research has successfully implemented EAs
in GPGPU cards [21, 39, 62], and mobile phones [12, 20].
Algorithms like UMDA have also been implemented in the
cell broadband engine used by PlayStation 3 game console
[60]. It is reasonable to expect that mobile telephones and



other devices will soon contain implementations of proba-
bilistic graphical models to be used in the solution of pre-
dictive tasks in different contexts. Therefore, it will be a
good idea to implement EDAs in Android [18] and other
languages used by these devices. A related question is how
to find the best ways to allow the new class of EA users an
intuitive interaction with the EA software. Portable devices
may be instrumental in expanding the range of applications
for interactive evolutionary algorithms.

Virtual environments such as Second Life [63] have been
increasingly used as an arena for the investigation of ma-
chine learning algorithms. These environments provide dif-
ferent benchmarks for the interactions between human users
and artificial intelligence creatures or bots. An appealing
attribute of these environments is the constant flux of in-
formation that resembles what occurs in the real physical
world. In virtual environments like Second Life, sensors ac-
tively searches information about avatars movements and
behaviors, and artificial intelligence algorithms take deci-
sions based on this information. Virtual environment are
an excellent ground to investigate genetic-based machine
learning algorithms that use probabilistic models such as
advanced classifier systems [9, 10]. The main limitation in
the implementation of EDAs in virtual environments is re-
lated to the constraints in the computational power provided
by these environments. Programming languages like Linden
scripting [28] set limits to the number of variables and to
the complexity of the used data structures. Nevertheless,
current computational power is at least sufficient to allow
the implementation of simple EDAs such as UMDA.

6. CONCLUSIONS

EDA software is an important component for expanding
the application of these algorithms and improving their per-
formance in different domains. In this paper I have reviewed
different issues related with the implementation of EDAs.
Although some EDA implementations are available from the
authors upon request, I have focused on those implementa-
tions which can be directly accessed from internet. I have
proposed a classification of these implementations and ar-
gued for the conception of modular implementations which
allow the evaluation of different EDA variants. The paper
also includes proposals for enhancing current EDAs imple-
mentations and extending the scope of EDAs applications
to other unexplored areas.

For many years, research on EDAs has mainly focused in
improving the EDAs components (learning, sampling, selec-
tion, etc.) and the way they interact. In particular, theoret-
ical and empirical analysis of a wide variety of PGMs have
received much attention. The question of how to implement
EDASs has not received a similar attention. However, imple-
mentations are not merely a tool to test the research ideas.
Clever implementations are a direct way to incorporate the
research results into the practice, and are the ultimate tool
to determine the advantages of the proposed algorithms over
competitive methods. For EDAs, rethinking the way soft-
ware is conceived may contribute to potentiate their use by
other communities. Similarly, by investigating how to pro-
gram EDAs for the emergent computational platforms, we
can expand the potential range of application of these meth-
ods and set the path for new directions to advance the re-
search on these algorithms.
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