
Estimation of Distribution Algorithms: From Available
Implementations to Potential Developments

Roberto Santana
Universidad Politécnica de

Madrid
Madrid, Spain

roberto.santana@upm.es

ABSTRACT

This paper focuses on the analysis of estimation of distri-
bution algorithms (EDAs) software. The important role
played by EDAs implementations in the usability and range
of applications of these algorithms is considered. A survey
of available EDA software is presented, and classifications
based on the class of programming languages and design
strategies used for their implementations are discussed. The
paper also reviews different directions to improve current
EDA implementations. A number of lines for further ex-
panding the areas of application for EDAs software are pro-
posed.

Categories and Subject Descriptors

G.1 [Optimization]: Global optimization; G.3 [Proba-
bilistic methods]

General Terms

Algorithms

Keywords

Estimation of distribution algorithms, probabilistic mod-
eling, software, programming, virtual environment, mobile
computing

1. INTRODUCTION
It is acknowledged that software availability contributes to

the reproducibility of experimental results and the dissemi-
nation of research achievements. Advances in evolutionary
computation (EC) are potentiated when the implementa-
tions of the introduced algorithms are made publicly avail-
able by the authors. Additionally, in order to boost practical
applications of evolutionary algorithms, software developers
should consider the conception of general and flexible soft-
ware. Implementations of evolutionary algorithms will be
more valuable if they could be applied to optimization prob-
lems arising in different contexts, and if they are intuitive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0690-4/11/07 ...$10.00.

and reusable, contributing to save the time of users less fa-
miliarized with EC theory.

One of the most active areas in EC research is the study
of estimation of distribution algorithms (EDAs) [32, 45, 55].
Since its conception, research on EDAs has moved on multi-
ple fronts. From their initial application to relatively simple
binary problems, applications of EDAs have been extended
to difficult non-binary discrete, continuous and mixed prob-
lems [36, 57]. Different variants of EDAs have been pro-
posed for multi-objective [8, 59, 84] and dynamic functions
[30]. Theoretical research on EDAs has also experienced a
rapid development. However, since the use of probabilistic
graphical models (PGMs) defended by EDAs developers is
a fundamental shift in traditional research on evolutionary
algorithms, a rapid embracement of this new methodology
by the community of EC users is not expected. A related
problem is that EDAs implementations are, in general, more
complex than evolutionary algorithms based on the use of
simple or heuristic genetic operators. Therefore, the avail-
ability of EDA software is very important for expanding the
use of these algorithms.

The first part of this paper reviews available implemen-
tations of EDAs, analyzing their main characteristics and
proposing a classification of these implementations that could
be useful to users and developers. The paper does not survey
the different classes of EDAs. For such type of analysis, the
interested reader is suggested to consult [32, 55]. The second
part of the paper focuses on the analysis of the features that
could enhance the applicability of EDAs implementations.
Although there are several software packages that provide
implementations of EDAs, in some cases, the source code of
the programs is not available. In other cases, the programs
are only available upon request from the authors. The paper
focuses on the analysis of those packages whose source code
is available from internet.

The paper is organized as follows: In the next section,
available EDA implementations are reviewed. Algorithms
are grouped into three classes according to the program-
ming language they have been implemented: C and C++
programs are grouped in the first class, Matlab programs in
the second, and all implementations in any other language
are grouped in the third class. In Section 3, a classification of
EDA implementations according to the design strategy used
to program the algorithms is introduced. Section 4 proposes
several ways in which EDAs implementations could be en-
hanced. Section 5 discusses a number of ideas related to
EDA implementations that could expand the application of

679

these algorithms. The conclusions of our paper and some
lines for future research are given in Section 6.

2. REVIEW OF EDA IMPLEMENTATIONS
The analysis of the available software has shown that most

implementations have been programmed in C++ and Mat-
lab. This fact has motivated the classification of the EDA
software presented in this section. The surveyed software are
summarized in Table 1, that describes the software identi-
fiers, the papers in which they have been presented and the
programming language they have been implemented. In Ta-
ble 2, the web pages from which one or more of the EDA
implementations can be downloaded are listed.

2.1 C and C++ implementations
The first implementation of the extended compact genetic

algorithm (ECGA) [24] was presented in [34]. It allows the
user to define its own objective function. This implementa-
tion does not use advanced features of the C++ language
such as templates and inheritance. Therefore, it makes eas-
ier to the user to modify the code and plug-in his own ob-
jective function using the C programming language alone.

An implementation of the χ-ary ECGA in C++ was in-
troduced in [16]. χ-ary ECGA extends the application of
non-overlapping marginal models to non-binary problems of
χ-ary cardinality. The source code is also an extension of
the original binary-coded ECGA and its previous implemen-
tation in C++ [34, 35].

Identifier Reference Language
MBOA, AMBOA [49, 48] C++

BOA [53, 51, 52] C++
Tree-EDA [58] C++
RM-EDA [84] C++,M

Hybrid-EDA [83] C++,M
Mateda [65, 67] M
ECGA [34, 35, 69, 69, 70] C++,M
LiO [40] Java

Evoptool [79] C++
AMALGAM [7] C
ParadisEO [11, 77] C++
gtEDA [29] M

Table 1: Description of surveyed EDA software, im-
plemented in C, C++, Matlab (M) and Java.

Different implementations of tree-based EDAs [4, 56] are
available. The software presented in [58] is available for
download. A simple implementation of the Bayesian op-
timization algorithm (BOA) [52, 53] is presented in [50].
A more sophisticated implementation incorporating decision
graphs is presented in [51].

The evolutionary optimization tool (Evoptool) [79] is an
optimization toolkit that implements different evolutionary
optimization algorithms. EDA implementations includes uni-
variate EDAs such as compact GA (cGA) [25], population-
based incremental learning (PBIL) [3], and UMDA [45]. Im-
plementations of bivariate EDAs include MIMIC [14] and
COMIT [5]. Additionally, different versions of Markov net-
work based EDAs [64, 73, 75] are also implemented. They
include the univariate and bivariate versions of DEUM [74,
76]. External algorithm implementations can be wrapped
through patches. Using this procedure, Evoptool includes
the implementation of the simple BOA [50]. Evoptool also
includes several benchmark problems.

ParadisEO [11, 77] is a white-box object-oriented software
framework dedicated to the flexible design of metaheuristics
for optimization problems of both discrete and combinatorial
nature. It contains general classes that allows the definition
of generic discrete and continuous EDAs.

The mixed BOA (MBOA) [49] and the adaptive mixed
BOA (AMBOA) [48] are conceived for the solution of mixed
discrete-continuous problems. In contrast to MBOA, AM-
BOA copes with improved performance in the continuous
domain due to variance-adaptation. The C++ implementa-
tions of these two EDAs are parallel.

Implementations of hybrid EDAs that use genetic opera-
tors probabilistic modeling are also available. A C++ im-
plementation of an EDA with guided mutation is proposed
in [83]. The guided mutation is proposed by incorporating
the location information (the actual position in the search
space) and the global statistical information, which is rep-
resented by a univariate marginal distribution model [83].

There are not many implementations of multi-objective
EDAs. A C++ implementation of the regularity model-
based multiobjective estimation of distribution algorithm
(RM-EDA) [84] for continuous problems is available. RM-
EDA is based on a regularity of the Pareto set in the decision
space. At each generation, RM-EDA models a promising
area in the decision space by a probability distribution whose
centroid is a 1-D piecewise continuous manifold. ParadisEO-
MOEO [33] is an extension of ParadisEO to multi-objective
problems. It is a general-purpose software framework dedi-
cated to the design and the implementation of evolutionary
multiobjective optimization techniques. EDAs can be also
implemented for this multi-objective module.

The C implementation of the adapted maximum-likelihood
Gaussian model iterated density estimation evolutionary al-
gorithm (AMaLGaM-IDEA) [7] includes different approaches
to the solution of continuous optimization problems. In
AMaLGaM-IDEA, the factorizations of the Gaussian distri-
bution is either not factorized, factorized using a Bayesian
factorization that is learned in a greedy fashion, or factorized
using the univariate factorization [7].

2.2 Matlab implementations
An interface for Matlab of the C++ implementation of the

χ-ary extended compact genetic algorithm is described in
[69]. The source code is an extension of the original binary-
coded ECGA and its previous implementation in C++ [34,
35]. A pure Matlab implementation of ECGA is presented
in [70]. The implementation allows the user to modify the
fitness function and run eCGA on user-defined problems.

A general toolkit for estimation of distribution algorithms
(gtEDA) is presented in [29]. gtEDA implements a num-
ber of univariate and bivariate discrete EDAs. The software
implements a number of toy problems and allows the user
to test his own objective function. No multivariate EDA is
included in the current implementation. A Matlab imple-
mentation of the RM-EDA [84] is also available.

Mateda2.0 [65, 67] implements single and multi-objective
discrete and continuous optimization problems using EDAs
based on undirected and directed probabilistic graphical mod-
els. It is conceived as an open package to allow users to in-
corporate different combinations of selection, learning, sam-
pling, and local search procedures. Additionally, it includes
methods to extract, process and visualize the structures
learned by the probabilistic models.

680

2.3 Other language implementations
Among EDA implementations in Java is the LiO pack-

age [40] which includes GAs, particle swarm optimization
(PSO) methods and EDAs implementations. The LiO li-
brary was initially designed to avoid implementing pieces
of code which are frequently used when solving problems
by means of metaheuristics and EC. In this sense, LiO can
be seen as a source of objects necessary to build search al-
gorithms [40]. LiO includes the implementation of several
univariate and multivariate EDAs and allows the creation of
generic EDAs.

3. APPROACHES TO EDA IMPLEMENTA-

TION
From the analysis of the software presented in the previous

section three different approaches to the implementation of
EDAs are identified:

• Implementation of a single EDA.

• Independent implementation of multiple EDAs.

• Common modular implementation of multiple EDAs.

Many of the available implementations fall in the first class
[34, 35, 70]. This type of software is usually conceived to
test a new EDA or extend its current scope of application.
The flexibility of these implementations to be combined with
other EDAs is, in most of cases, rather limited.

To the second class of implementation belong software
packages that provide independent implementations of dif-
ferent EDAs [29, 79]. Usually, other type of evolutionary al-
gorithms are also included in these implementations. When
the algorithms are independently implemented, none or few
common programming code is shared by their implementa-
tions. This approach is particularly suitable when the set
of implemented EDAs is very diverse. In some cases, the
software allows the algorithms to be compared in similar
conditions, (e.g. function testbeds and experimental bench-
marks are provided).

The third class of implementations groups programming
code conceived to take advantage of the modular structure
shared by most of EDAs [11, 40, 66]. In this approach, the
EDA components (e.g. learning and sampling methods) are
independently programmed. EDA implementations can be
then constructed as a particular combination of the compo-
nents. Modularity also allows the conception and validation
of new EDA proposals that combine different components.

A paradigmatic example of this type of implementations
is LiO, in which, from the point of view of design, a re-
source is an object whose behavior is known, and is thought
to be as independent as possible from the rest of the re-
sources. Since most of EDAs share a common scheme of
functioning, differing only on the probabilistic model used
to learn the features of the population, they are all imple-
mented in LiO by one class. The only exception is the PBIL
algorithm whose incremental learning step is different from
most EDAs.

4. ENHANCING EDA IMPLEMENTATIONS
There are several ways current EDAs can be enhanced

[68, 71]. This section focuses on general implementation
enhancements with a direct impact in the application of the

algorithms. The following is a list of ideas that could be
beneficial when incorporated to EDAs software.

• Parallel implementations.

• Automatic methods to compute the population size.

• Support for statistical analysis of experimental results.

• Predicting the time of convergence for the algorithm.

• Restart strategies based on different search situations.

• Advanced visualization of the EDA evolutionary path.

• Mining of the probabilistic models and information ex-
traction from the EDA search.

Although much work has been devoted to parallel EDAs
[15, 37, 38, 41, 47], only a few of the available EDAs im-
plementations are parallel [11, 47]. The use of parallelism is
critical for more efficient algorithms since available compu-
tational resources are increasingly parallel. However, since
there exist different alternatives for EDA parallelization [15,
38, 42] the choice for the type of parallelization to use should
be clearly stated. Furthermore, two or more forms of paral-
lelism could be incorporated to the programs.

There are several papers that theoretically and empirically
analyze the population sizes required by EDAs for conver-
gence [54, 61, 82]. Nevertheless, with a few exceptions [47],
EDAs implementations do not provide the user with auto-
matic procedures to compute the critical or suggested popu-
lation size. Computation of the critical population size using
the bisection method or other procedures should be incorpo-
rated as a tool to validate the EDA behavior and investigate
their scalability. Similarly, support for statistical analysis of
the experimental results, i.e. implementation of statistical
tests or summaries of the algorithms results that could be
easily used as input for statistical analysis software should
be part of EDA implementations.

Stop criteria used for most of EDAs implementations mainly
refer to the number of generations, reaching an a priori-set
fitness value or producing a very homogeneous population.
Some modular EDA implementations [65], allows the user to
implement stop criteria using historical information about
the EDA search. However, there are other studies that pro-
pose predictive models of the EDA behavior [19, 22, 44, 46,
54]. At least for certain classes of functions, these predictive
models could be employed to detect the stagnation and con-
vergence of the algorithms. It will be very useful that EDA
implementations could incorporate this type of predictive
models for intelligently setting stop conditions or providing
the user information about the current state of the search.
For example, using some of these models, the EDA software
could provide, at each generation, which is the probability
that the algorithm will improve the current best fitness value
in the next generations.

When stagnation of the search has been detected, restart
strategies are recognized as a relatively efficient procedure
to continue the search. Restart strategies based on differ-
ent search situations have been included in some EDA im-
plementations [7, 83]. Nevertheless, they should be incor-
porated to other EDA software as a way to enhance the
robustness of EDA applications.

Visualization of different aspects of the EDA search can
contribute to a more flexible design of the applications and

681

Reference Language Web pages
[49, 48] C++ http://jiri.ocenasek.com/#Download

[53, 51, 52, 58] C++ http://medal.cs.umsl.edu/software.php
[83, 84] C++,M http://cswww.essex.ac.uk/staff/zhang/code
[65, 67] M http://www.sc.ehu.es/ccwbayes/members/rsantana/software/matlab/MATEDA.html

[34, 35, 69, 69, 70] C++,M http://illigal.org/category/source-code/
[40] Java http://www.dsi.uclm.es/simd/SOFTWARE/LIO/
[79] C++ http://airwiki.elet.polimi.it/index.php/Evoptool: Evolutive Optimization Tool
[7] C http://homepages.cwi.nl/bosman/source code.php

[11, 77] C++ http://paradiseo.gforge.inria.fr/

Table 2: EDA software available from internet.

to identify previously unknown information of the problem
domain. Most of EDA implementations support only basic
visualization of the algorithms behavior. It is very common
to plot the best and average fitness of the population at
each generation. Nevertheless, visualization of other type
of information (e.g. the evolution of the graphical models
structure) should be incorporated to the software.

One of the most promising EDA applications is the auto-
matic extraction of problem information from the analysis
of the information produced during the EDA search [26, 27,
66]. In some real-world problems, the information extracted
from the EDA evolution could be as important as the op-
timization results. In [65], methods to automatically find
most frequent substructures in the graphical models learned
by EDAs along the evolution are implemented. One dif-
ficulty associated to the implementation of such methods,
is that the relevance of the information extracted from the
models can be very problem dependent. Nonetheless, con-
fronting the user with regularities identified and extracted
from the models could contribute to effective knowledge dis-
covery.

There are other areas [57, 68] where established and cur-
rent research on EDAs could be translated into novel fea-
tures of the EDA implementations. Such features could im-
prove the efficiency of EDAs, enhance the EDA user’s expe-
rience, and provide valuable information about the charac-
teristics of the problem.

5. EXPANDING THE SCOPE OF EDA AP-

PLICATIONS
This section analyzes some research areas where the im-

plementation of EDAs could lead to expanding the applica-
bility of these algorithms. Among these research areas are
the following:

• Make EDA implementations available in commonly used
scripting programming languages.

• Add EDA implementations to problem-domain spe-
cialized optimization packages.

• Take profit of the probabilistic modeling resources im-
plemented in R and Matlab to investigate novel EDAs
variants.

• Determine the feasibility of implementing EDAs in PDIs,
mobile telephones and other portable devices.

• Study potential applications of EDA implementations
in virtual environments.

There are three main reasons that point to the conve-
nience of implementing EDAs in scripting languages such

as Perl [80] and Python [31]. The first reason is that these
languages serve to interface many different devices, proto-
cols, applications, and file formats [43], allowing to address
diverse optimization problems, possibly implemented in dif-
ferent languages. The second reason is that there are several
modules already implemented in these scripting languages
that could be reused for the implementation of EDAs, in
particular modules related with EAs [6, 17, 43, 72] and ma-
chine learning techniques [1, 23, 72, 81]. Finally, and per-
haps the most important reason, is that Perl and Python
are the languages of choice for many scientific communities.
EDAs implemented in these languages could be tested in a
wide variety of real-world optimization problems.

EDAs have been applied with good results to a variety
of domains. These applications have followed, in most of
cases, a single case approach. One example of these do-
mains is Bioinformatics, where an impressive record of EDA
applications have been reported [2]. However, none of the
specialized packages used to solve problems from Bioinfor-
matics incorporates an EDAmodule. Focusing on the imple-
mentation of generic EDA modules, that can be applied to
different types of problems with minor changes and within a
specialized programming environment can be worth in terms
of the popularization of these optimization algorithms.

Software such as R [13] and Matlab [78] provide sophis-
ticated implementations of probabilistic modeling and ma-
chine learning methods. The available probabilistic mod-
eling algorithms can be used to ease the conception and
validation of different EDA approaches. This is one of the
pillars of the MATEDA implementations [65, 67]. The same
idea can be developed using R or any other software for
which a library of statistical and machine learning methods
is available.

Some of the technological developments of recent years
include the emergence of new powerful computational plat-
forms such as graphical cards, cell broad band engines,and
the popularization of mobile computing devices such as mo-
bile telephones, PDI and other portable devices. These plat-
forms are candidates for the implementation of EDAs and
other EAs. The challenge is the identification of the target
problems. There are many common day tasks that involves
the solution of an optimization problem. Other possible do-
mains of applications for EDAs would be image evolution or
gaming. Future research on EDA implementations should
evaluate the most appropriate programming solutions for
the most recent computational platforms.

Some recent research has successfully implemented EAs
in GPGPU cards [21, 39, 62], and mobile phones [12, 20].
Algorithms like UMDA have also been implemented in the
cell broadband engine used by PlayStation 3 game console
[60]. It is reasonable to expect that mobile telephones and

682

other devices will soon contain implementations of proba-
bilistic graphical models to be used in the solution of pre-
dictive tasks in different contexts. Therefore, it will be a
good idea to implement EDAs in Android [18] and other
languages used by these devices. A related question is how
to find the best ways to allow the new class of EA users an
intuitive interaction with the EA software. Portable devices
may be instrumental in expanding the range of applications
for interactive evolutionary algorithms.

Virtual environments such as Second Life [63] have been
increasingly used as an arena for the investigation of ma-
chine learning algorithms. These environments provide dif-
ferent benchmarks for the interactions between human users
and artificial intelligence creatures or bots. An appealing
attribute of these environments is the constant flux of in-
formation that resembles what occurs in the real physical
world. In virtual environments like Second Life, sensors ac-
tively searches information about avatars movements and
behaviors, and artificial intelligence algorithms take deci-
sions based on this information. Virtual environment are
an excellent ground to investigate genetic-based machine
learning algorithms that use probabilistic models such as
advanced classifier systems [9, 10]. The main limitation in
the implementation of EDAs in virtual environments is re-
lated to the constraints in the computational power provided
by these environments. Programming languages like Linden
scripting [28] set limits to the number of variables and to
the complexity of the used data structures. Nevertheless,
current computational power is at least sufficient to allow
the implementation of simple EDAs such as UMDA.

6. CONCLUSIONS
EDA software is an important component for expanding

the application of these algorithms and improving their per-
formance in different domains. In this paper I have reviewed
different issues related with the implementation of EDAs.
Although some EDA implementations are available from the
authors upon request, I have focused on those implementa-
tions which can be directly accessed from internet. I have
proposed a classification of these implementations and ar-
gued for the conception of modular implementations which
allow the evaluation of different EDA variants. The paper
also includes proposals for enhancing current EDAs imple-
mentations and extending the scope of EDAs applications
to other unexplored areas.

For many years, research on EDAs has mainly focused in
improving the EDAs components (learning, sampling, selec-
tion, etc.) and the way they interact. In particular, theoret-
ical and empirical analysis of a wide variety of PGMs have
received much attention. The question of how to implement
EDAs has not received a similar attention. However, imple-
mentations are not merely a tool to test the research ideas.
Clever implementations are a direct way to incorporate the
research results into the practice, and are the ultimate tool
to determine the advantages of the proposed algorithms over
competitive methods. For EDAs, rethinking the way soft-
ware is conceived may contribute to potentiate their use by
other communities. Similarly, by investigating how to pro-
gram EDAs for the emergent computational platforms, we
can expand the potential range of application of these meth-
ods and set the path for new directions to advance the re-
search on these algorithms.

7. ACKNOWLEDGMENTS
This work has been partially supported by the TIN2010-

20900-C04-04, Consolider Ingenio 2010 - CSD2007-00018,
and the CajalBlueBrain projects (Spanish Ministry of Sci-
ence and Innovation).

8. REFERENCES
[1] D. Albanese, S. Merler, G. Jurman, R. Visintainer,

and C. Furlanello. MLPY machine learning Py, 2010.
http://mloss.org/software/view/66/.

[2] R. Armañanzas, I. Inza, R. Santana, Y. Saeys, J. L.
Flores, J. A. Lozano, Y. Van de Peer, R. Blanco,
V. Robles, C. Bielza, and P. Larrañaga. A review of
estimation of distribution algorithms in
bioinformatics. BioData Mining,
1(6):doi:10.1186/1756–0381–1–6, 2008.

[3] S. Baluja. Population-based incremental learning: A
method for integrating genetic search based function
optimization and competitive learning. Technical
Report CMU-CS-94-163, Carnegie Mellon University,
Pittsburgh, PA, 1994.

[4] S. Baluja and S. Davies. Using optimal
dependency-trees for combinatorial optimization:
Learning the structure of the search space. In D. H.
Fisher, editor, Proceedings of the 14th International
Conference on Machine Learning, pages 30–38, San
Francisco, CA., 1997. Morgan Kaufmann.

[5] S. Baluja and S. Davies. Fast probabilistic modeling
for combinatorial optimization. In Proceedings of 15th
National Conference on Artificial Intelligence
AAAI-98, Madison, Wisconsin, July 1998. American
Association for Artificial Intelligence.

[6] D. Blank, D. Kumar, L. Meeden, and H. Yanco. The
Pyro toolkit for AI and robotics. AI magazine,
27(1):39, 2006.

[7] P. A. Bosman. On empirical memory design, faster
selection of Bayesian factorizations and parameter-free
Gaussian EDAs. In Proceedings of the 11th Genetic
and Evolutionary Computation Conference
GECCO-2011, pages 389–396. ACM, 2009.

[8] P. A. Bosman and D. Thierens. Multi-objective
optimization with diversity preserving mixture-based
iterated density estimation evolutionary algorithms.
International Journal of Approximate Reasoning,
31(3):259–289, 2002.

[9] M. Butz, M. Pelikan, X. Llorá, and D. E. Goldberg.
Effective and reliable online classification combining
XCS with EDA mechanisms. In M. Pelikan, K. Sastry,
and E. Cantú-Paz, editors, Scalable Optimization via
Probabilistic Modeling: From Algorithms to
Applications, Studies in Computational Intelligence,
pages 249–274. Springer, 2006.

[10] M. V. Butz, M. Pelikan, X. Llorá, and D. E. Goldberg.
Automated global structure extraction for effective
local building block processing in XCS. Evolutionary
Computation, 14(3):345–380, 2006.

[11] S. Cahon, N. Melab, and E. Talbi. ParadisEO: A
framework for the reusable design of parallel and
distributed metaheuristics. Journal of Heuristics,
10(3):357–380, 2004.

[12] I. Carreras and D. Linner. Self-evolving applications
over opportunistic communication systems. In

683

Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2010 8th IEEE International
Conference on, pages 153–158. IEEE, 2010.

[13] M. Crawley. The R book. John Wiley & Sons Inc, 2007.

[14] J. S. De Bonet, C. L. Isbell, and P. Viola. MIMIC:
Finding optima by estimating probability densities. In
M. C. Mozer, M. I. Jordan, and T. Petsche, editors,
Advances in Neural Information Processing Systems,
volume 9, pages 424–430. The MIT Press, Cambridge,
1997.

[15] L. de la Ossa, J. A. Gámez, and J. M. Puerta.
Migration of probability models instead of individuals:
An alternative when applying the island model to
EDAs. In Parallel Problem Solving from Nature
(PPSN VIII), volume 3242, pages 242–252. Springer,
2004.

[16] L. de la Ossa, K. Sastry, and F. G. Lobo. χ-ary
extended compact genetic algorithm in C++. IlliGAL
Report 2006013, University of Illinois at
Urbana-Champaign, Illinois Genetic Algorithms
Laboratory, Urbana, IL, 2006.

[17] W. deLandgraaf, A. Eiben, and V. Nannen. Parameter
calibration using meta-algorithms. In Proceedings of
the 2007 Congress on Evolutionary Computation
CEC-2007, pages 71–78. IEEE Press, 2007.

[18] J. DiMarzio. Android: a programmer’s guide.
McGraw-Hill Osborne Media, 2008.

[19] C. Echegoyen, A. Mendiburu, R. Santana, and J. A.
Lozano. A quantitative analysis of estimation of
distribution algorithms based on Bayesian networks.
IEEE Transactions on Evolutionary Computation,
2011. Accepted for publication.

[20] J. Fajardo and C. Oppus. A mobile disaster
management system using the Android technology.
WSEAS Transactions on Communications,
9(6):343–353, 2010.

[21] M. Franco, N. Krasnogor, and J. Bacardit. Speeding
up the evaluation of evolutionary learning systems
using GPGPUs. In Proceedings of the 12th annual
conference on Genetic and evolutionary computation,
pages 1039–1046. ACM, 2010.

[22] C. González, J. A. Lozano, and P. Larrañaga.
Mathematical modeling of UMDAc algorithm with
tournament selection. Behaviour on linear and
quadratic functions. International Journal of
Approximate Reasoning, 31(4):313–340, 2002.

[23] A. Gouws. A Python implementation of graphical
models. Master’s thesis, Faculty of Engineering.
Stellenbosch University, 2010.

[24] G. Harik. Linkage learning via probabilistic modeling
in the ECGA. IlliGAL Report 99010, University of
Illinois at Urbana-Champaign, Illinois Genetic
Algorithms Laboratory, Urbana, IL, 1999.

[25] G. R. Harik, F. G. Lobo, and D. E. Goldberg. The
compact genetic algorithm. IlliGAL Report No. 97006,
University of Illinois at Urbana-Champaign, Illinois
Genetic Algorithms Laboratory, Urbana, 1997.

[26] M. Hauschild, M. Pelikan, C. Lima, and K. Sastry.
Analyzing probabilistic models in hierarchical BOA on
traps and spin glasses. In D. Thierens et al., editor,
Proceedings of the Genetic and Evolutionary

Computation Conference GECCO-2007, volume I,
pages 523–530, London, UK, 2007. ACM Press.

[27] M. Hauschild, M. Pelikan, K. Sastry, and D. E.
Goldberg. Using previous models to bias structural
learning in the hierarchical BOA. In Proceedings of the
10th annual conference on Genetic and evolutionary
computation GECCO-2008, pages 415–422, New York,
NY, USA, 2008. ACM.

[28] J. Heaton. Introduction to Linden scripting language
for Second Life. Heaton Research, Inc., 2007.

[29] Y. Hua, W. Wen-Quan, and L. Zhong. General toolkit
for discrete estimation of distribution algorithms. In
Proceedings of the 2010 International Conference of
Information Science and Management Engineering
(ISME), volume 2, pages 212–215. IEEE.

[30] M. Kobliha, J. Ocenasek, and J. Schwarz. Bayesian
optimization algorithm in dynamic environment. In
Proceedings of the Mendel 2005 11th Internacional
Conference on Soft Computing, pages 15–20, Brno,
CZ, 2005.

[31] H. Langtangen. Python scripting for computational
science. Springer Verlag, 2004.

[32] P. Larrañaga and J. A. Lozano, editors. Estimation of
Distribution Algorithms. A New Tool for Evolutionary
Computation. Kluwer Academic Publishers,
Boston/Dordrecht/London, 2002.

[33] A. Liefooghe, L. Jourdan, and E. G. Talbi. A unified
model for evolutionary multiobjective optimization
and its implementation in a general purpose software
framework: ParadisEO-MOEO. Technical Report
Research Report RR-6906, INRIA, 2009.

[34] F. G. Lobo and G. R. Harik. Extended compact
genetic algorithm in C++. IlliGAL Report No. 99016,
University of Illinois at Urbana-Champaign, Illinois
Genetic Algorithms Laboratory, Urbana, IL, 1999.

[35] G. Lobo Fernando, S. Kumara, and R. Harik Georges.
Extended compact genetic algorithm in C++ (version
1.1). IlliGAL Report No. 2006012, University of
Illinois at Urbana-Champaign, Illinois Genetic
Algorithms Laboratory, Urbana, IL, 2006.

[36] J. A. Lozano, P. Larrañaga, I. Inza, and
E. Bengoetxea, editors. Towards a New Evolutionary
Computation: Advances on Estimation of Distribution
Algorithms. Springer, 2006.

[37] J. A. Lozano, R. Sagarna, and P. Larrañaga. Parallel
estimation of distribution algorithms. In P. Larrañaga
and J. A. Lozano, editors, Estimation of Distribution
Algorithms. A New Tool for Evolutionary
Computation, pages 125–142. Kluwer Academic
Publishers, Boston/Dordrecht/London, 2002.

[38] J. Madera, E. Alba, and A. Ochoa. Parallel estimation
of distribution algorithms. In E. Alba, editor, Parallel
Metaheuristics, pages 203–222. John Wiley & Sons,
2005.

[39] O. Maitre, L. A. Baumes, N. Lachiche, A. Corma, and
P. Collet. Coarse grain parallelization of evolutionary
algorithms on GPGPU cards with EASEA. In
Proceedings of the 11th Annual conference on Genetic
and evolutionary computation, GECCO ’09, pages
1403–1410, New York, NY, USA, 2009. ACM.

[40] J. L. Mateo and L. de la Ossa. LiO an easy and
flexible library of metaheuristics. Technical Report

684

DIAB-06-04-1, Department of Computing Systems,
Escuela Politecnica Superior de Castilla La Mancha,
Albacete, Spain, 2007.

[41] A. Mendiburu, J. Lozano, and J. Miguel-Alonso.
Parallel implementation of EDAs based on
probabilistic graphical models. IEEE Transactions on
Evolutionary Computation, 9(4):406–423, 2005.

[42] A. Mendiburu, J. Miguel-Alonso, J. A. Lozano,
M. Ostra, and C. Ubide. Parallel EDAs to create
multivariate calibration models for quantitative
chemical applications. Journal of Parallel Distributed
Computation, 66(8):1002–1013, 2006.

[43] J. Merelo Guervós, P. Castillo, and E. Alba.
Algorithm:: Evolutionary, a flexible Perl module for
evolutionary computation. Soft Computing-A Fusion
of Foundations, Methodologies and Applications, pages
1–19, 2009.

[44] H. Mühlenbein and T. Mahnig. Convergence theory
and applications of the Factorized Distribution
Algorithm. Journal of Computing and Information
Technology, 7(1):19–32, 1998.

[45] H. Mühlenbein and G. Paaß. From recombination of
genes to the estimation of distributions I. Binary
parameters. In H.-M. Voigt, W. Ebeling,
I. Rechenberg, and H.-P. Schwefel, editors, Parallel
Problem Solving from Nature - PPSN IV, volume 1141
of Lectures Notes in Computer Science, pages
178–187, Berlin, 1996. Springer.

[46] J. Ocenasek. Entropy-based convergence measurement
in discrete estimation of distribution algorithms. In
J. A. Lozano, P. Larrañaga, I. Inza, and
E. Bengoetxea, editors, Towards a New Evolutionary
Computation: Advances on Estimation of Distribution
Algorithms, pages 39–50. Springer, 2006.

[47] J. Ocenasek, E. Cantú-Paz, M. Pelikan, and
J. Schwarz. Design of parallel estimation of
distribution algorithms. In M. Pelikan, K. Sastry, and
E. Cantú-Paz, editors, Scalable Optimization via
Probabilistic Modeling: From Algorithms to
Applications, Studies in Computational Intelligence,
pages 187–204. Springer, 2006.

[48] J. Ocenasek, S. Kern, N. Hansen, and S. M. and.
P. Koumoutsakos. A mixed Bayesian optimization
algorithm with variance adaptation. Lecture Notes in
Computer Science, pages 352–361, 2004.

[49] J. Ocenasek and J. Schwarz. Estimation of distribution
algorithm for mixed continuous-discrete optimization
problems. In Proceedings of the 2nd Euro-International
Symposium on Computational Intelligence, pages
227–232, Kosice, Slovakia, 2002. IOS Press.

[50] M. Pelikan. A simple implementation of Bayesian
optimization algorithm in C++ (version1. 0). IlliGAL
Report No. 99011, University of Illinois at
Urbana-Champaign, Illinois Genetic Algorithms
Laboratory, Urbana, IL, 1999.

[51] M. Pelikan. The Bayesian optimization algorithm
(BOA) with decision graphs. IlliGAL Report No.
2000025, University of Illinois at Urbana-Champaign,
Illinois Genetic Algorithms Laboratory, Urbana, IL,
May 2000.

[52] M. Pelikan. Bayesian optimization algorithm: From

single level to hierarchy. PhD thesis, University of
Illinois, 2002.

[53] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz. BOA:
The Bayesian optimization algorithm. In W. Banzhaf,
J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar,
M. Jakiela, and R. E. Smith, editors, Proceedings of
the Genetic and Evolutionary Computation
Conference GECCO-1999, volume I, pages 525–532,
Orlando, FL, 1999. Morgan Kaufmann Publishers, San
Francisco, CA.

[54] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz.
Bayesian optimization algorithm, population sizing,
and time to convergence. In Proceedings of the Genetic
and Evolutionary Computation Conference
GECCO-2000, pages 275–282, 2000.

[55] M. Pelikan, D. E. Goldberg, and F. Lobo. A survey of
optimization by building and using probabilistic
models. Computational Optimization and
Applications, 21(1):5–20, 2002.

[56] M. Pelikan and H. Mühlenbein. The bivariate marginal
distribution algorithm. In R. Roy, T. Furuhashi, and
P. Chawdhry, editors, Advances in Soft Computing -
Engineering Design and Manufacturing, pages
521–535, London, 1999. Springer.

[57] M. Pelikan, K. Sastry, and E. Cantú-Paz, editors.
Scalable Optimization via Probabilistic Modeling:
From Algorithms to Applications. Studies in
Computational Intelligence. Springer, 2006.

[58] M. Pelikan, K. Sastry, and D. E. Goldberg.
Implementation of the dependency-tree estimation of
distribution algorithm in C++. MEDAL Report No.
2006010, Missouri Estimation of Distribution
Algorithms Laboratory (MEDAL), 2006.

[59] M. Pelikan, K. Sastry, and D. E. Goldberg.
Multiobjective estimation of distribution algorithms.
In M. Pelikan, K. Sastry, and E. Cantú-Paz, editors,
Scalable Optimization via Probabilistic Modeling: From
Algorithms to Applications, Studies in Computational
Intelligence, pages 223–248. Springer, 2006.

[60] C. Pérez-Miguel, J. Miguel-Alonso, and
A. Mendiburu. Porting estimation of distribution
algorithms to the cell broadband engine. Parallel
Computing, 36(10-11):618–634, 2010.

[61] P. Poš́ık. Preventing premature convergence in a
simple EDA via global step size setting. In
G. Rudolph, T. Jansen, S. Lucas, C. Poloni, and
N. Beume, editors, Parallel Problem Solving from
Nature - PPSN X, volume 5199 of Lecture Notes in
Computer Science, pages 549–558, Dortmund,
Germany, 2008. Springer.

[62] P. Posṕıchal, J. Jaros, and J. Schwarz. Parallel Genetic
Algorithm on the CUDA Architecture. Applications of
Evolutionary Computation, pages 442–451, 2010.

[63] M. Rymaszewski. Second life: The official guide.
Sybex, 2007.

[64] R. Santana. A Markov network based factorized
distribution algorithm for optimization. In Proceedings
of the 14th European Conference on Machine Learning
(ECML-PKDD 2003), volume 2837 of Lecture Notes
in Artificial Intelligence, pages 337–348, Dubrovnik,
Croatia, 2003. Springer.

[65] R. Santana, C. Bielza, P. Larrañaga, J. A. Lozano,

685

C. Echegoyen, A. Mendiburu, R. Armañanzas, and
S. Shakya. MATEDA: Estimation of distribution
algorithms in MATLAB. Journal of Statistical
Software, 35(7):1–30, 2010.

[66] R. Santana, C. Bielza, J. A. Lozano, and
P. Larrañaga. Mining probabilistic models learned by
EDAs in the optimization of multi-objective problems.
In Proceedings of the 11th Annual Genetic and
Evolutionary Computation Conference GECCO-2009,
pages 445–452, New York, NY, USA, 2009. ACM.

[67] R. Santana, C. Echegoyen, A. Mendiburu, C. Bielza,
J. A. Lozano, P. Larrañaga, R. Armañanzas, and
S. Shakya. MATEDA: A suite of EDA programs in
Matlab. Technical Report EHU-KZAA-IK-2/09,
Department of Computer Science and Artificial
Intelligence, University of the Basque Country,
February 2009.

[68] R. Santana, P. Larrañaga, and J. A. Lozano. Research
topics on discrete estimation of distribution
algorithms. Memetic Computing, 1(1):35–54, 2009.

[69] K. Sastry, L. de la Ossa, and F. G. Lobo. χ-ary
extended compact genetic algorithm for Matlab in
C++. IlliGAL Report 2006014, University of Illinois
at Urbana-Champaign, Illinois Genetic Algorithms
Laboratory, Urbana, IL, 2006.

[70] K. Sastry and A. Orriols-Puig. Extended compact
genetic algorithm in Matlab. IlliGAL Report 2007009,
University of Illinois at Urbana-Champaign, Illinois
Genetic Algorithms Laboratory, Urbana, IL, 2007.

[71] K. Sastry, M. Pelikan, and D. E. Goldberg. Efficiency
enhancement of estimation of distribution algorithms.
In M. Pelikan, K. Sastry, and E. Cantú-Paz, editors,
Scalable Optimization via Probabilistic Modeling: From
Algorithms to Applications, Studies in Computational
Intelligence, pages 161–186. Springer, 2006.

[72] T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder,
F. Sehnke, T. Rückstieß, and J. Schmidhuber.
PyBrain. The Journal of Machine Learning Research,
11:743–746, 2010.

[73] S. Shakya. Markov random field modelling of genetic
algorithms. Technical report, The Robert Gordon
University, Aberdeen, UK, 2004.

[74] S. Shakya. DEUM: A framework for an Estimation of
Distribution Algorithm based on Markov Random
Fields. PhD thesis, The Robert Gordon University.
School of Computing, Aberdeen, UK, 2006.

[75] S. Shakya and R. Santana. An EDA based on local
Markov property and Gibbs sampling. In M. Keijzer,
editor, Proceedings of the 2008 Genetic and
evolutionary computation conference (GECCO), pages
475–476, New York, NY, USA, 2008. ACM.

[76] S. K. Shakya, J. A. McCall, and D. F. Brown.
Updating the probability vector using MRF technique
for a Univariate EDA. In E. Onaindia and S. Staab,
editors, Proceedings of the Second Starting AI
Researchers’ Symposium, pages 15–25, Valencia,
Spain, 2004. IOS press.

[77] E.-G. Talbi. From Design to Implementation: A
Unified View of Metaheuristics. Wiley, 2009.

[78] The MathWorks, Inc. MATLAB – The Language of
Technical Computing, Version 7.5. The MathWorks,
Inc., Natick, Massachusetts, 2007.

[79] G. Valentini, L. Malago, and M. Matteucci. Evoptool:
An extensible toolkit for evolutionary optimization
algorithms comparison. In Proceedings of the 2010
IEEE Congress on Evolutionary Computation
(CEC-2010), pages 1–8. IEEE.

[80] P. Wainwright, S. Cozens, A. Calpini, A. Corliss, and
J. Merelo-Guervos. Professional Perl Programming.
Wrox Press Ltd. Birmingham, UK

”
2001.

[81] B. Wilczyński and N. Dojer. BNFinder: exact and
efficient method for learning Bayesian networks.
Bioinformatics, 25(2):286, 2009.

[82] T.-L. Yu, K. Sastry, D. E. Goldberg, and M. Pelikan.
Population sizing for entropy-based model building in
genetic algorithms. In D. Thierens et al., editor,
Proceedings of the Genetic and Evolutionary
Computation Conference GECCO-2007, volume I,
pages 601–608, London, UK, 2007. ACM Press.

[83] Q. Zhang, J. Sun, and E. P. K. Tsang. Evolutionary
algorithm with guided mutation for the maximum
clique problem. IEEE Transactions on Evolutionary
Computation, 9(2):192–200, 2005.

[84] Q. Zhang, A. Zhou, and Y. Jin. RM-MEDA: A
regularity model based multiobjective estimation of
distribution algorithm. IEEE Transactions on
Evolutionary Computation, 12(1):41–63, 2008.

686

