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ABSTRACT
Tuning distributed genetic algorithms (dGAs) increases even
more the task of finding an appropriate parameterization,
since the migration operator adds, at least, five additional
values that have to be set up. This work is a preliminary ap-
proach on using a landscape measure (the Fitness Distance
Correlation) to dynamically adjust one of these five param-
eters, in particular, the migration period. The results have
shown that, by using this information, the quality of the so-
lutions is competitive with those obtained by the algorithms
with the pre-tuned migration period, but with a saving of
more than 100 hours of preliminary experimentation.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms, Theory

Keywords
Landscape measures, tuning, distributed genetic algorithms

1. INTRODUCTION
When using distributed genetic algorithms (dGAs) [1], it

is very common in the literature to experimentally set the
migration parameters for each island (or semi-isolated sub-
population), which are responsible for the structure of the
algorithm and the intercommunication scheme (migration
policy). Tuning all these parameters for the best possible
performance is a computationally demanding task because
there is a large number of possible combinations to evalu-
ate (over many instances most times). Tuning algorithm
performance is a topic that has been studied in the litera-
ture. Several approahces are offline (i.e., applied prior to the
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actual utilization of the algorithm) such as Design of Exper-
iments [13] or F-RACE [3]. In this work, our approach for
establishing such a parameter setting, known as parameter
control [4], is based on starting the algorithm with an ini-
tial configuration that changes during the execution of the
algorithm (i.e., online adaptation). Here, the migration pa-
rameter under study is the migration period at which the
individuals are exchanged among subpopulations. The re-
sulting algorithm is a heterogeneous dGA (HdGA) [11] not
needing the traditional and costly ad-hoc pre-tuning of this
migration parameter.

Our contribution here is a preliminary approach aimed at
guiding the change in the migration period by using infor-
mation from an empirical landscape measure, the Fitness
Distance Correlation (FDC) [8], that is able to provide the
algorithm with an estimation of the difficulty of the search
space that each island is exploring. Other landscape mea-
sures could have been used [14, 15], but FDC is easy to
understand and to compute as well as it does not cause an
unaffordable computing overload.

In order to evaluate the performance of the proposed ap-
proach, the Max-Cut problem has been used. This is a well-
known NP-hard problem [10], and, besides its theoretical
importance, it has applications in several fields. That the
Max-Cut problem deserves further study is evidenced by the
continuing active research in this and related areas. By us-
ing 12 well-known instances from the specialized literature,
we have compared HdGA to five homogeneous dGAs with
five different pre-tuned migration periods. The results have
shown that our approach reaches competitive quality solu-
tions and, at the same time, saving more than 100 hours of
pre-tuning computational time.

The outline of the paper is as follows. Section 2 presents
the background to our parallel implementation of dGAs and
the characteristics of the proposed heterogeneous algorithm.
Section 3 formally defines the optimization problem and
gives details of the main components of the algorithms. Sec-
tion 4 presents experimentation performed to evaluate our
proposal. Finally, we summarize the conclusions and discuss
several lines for future research in Section 5.

2. HETEROGENEOUS DGAS: A CONTROL
PARAMETER APPROACH

In this work we focus on distributed GAs (dGAs) [1],
where the population is structured into smaller subpopu-
lations (islands) relatively isolated one each other (see Algo-
rithm 1 for the structure of a canonical GA (dGAi)). Copies

691



Algorithm 1 Elementary dGA (dGAi)

t = 0; {current generation}
initialize(Pi(t));
evaluate(Pi(t));
while (t < maxgenerations) do

P ′
i (t) = evolve(Pi(t)); {recombination and mutation}

P ′
i (t) = improve(P ′

i (t)); {local search}
evaluate (P ′

i (t));
P ′

i (t) = send/receive individuals from dGAj ; {neighbor dGA}
Pi(t + 1) = select new population from Pi(t) ∪ P ′

i (t);
t = t + 1;

end while

of individuals within a particular subpopulation Pi (where
i is the identifier of an island) can occasionally migrate to
another one. A migration policy defines the island topol-
ogy, when migration occurs, which individuals are being
exchanged, the synchronization among the subpopulations,
and the kind of integration of the exchanged individuals
within the target subpopulations. Consequently, five ad-
ditional parameters for controlling the migration policy are
needed. This in general adds an extra set-up time, that in
fact authors rarely report in their studies, but that repre-
sents a considerable effort. Also, since GAs are stochastic
algorithms, each parameter configuration has to be evalu-
ated at least 30 times in order to provide the results with
statistical significance.

In this preliminary work, our approach is to dynamically
adjust only one out of the five migration parameters (keeping
the others fixed): the migration period. As a consequence,
each island behaves differently so we are actually engineering
a heterogeneous dGA, which has been called HdGA. The
criterion used to modify the migration period (mig period)
is based on the fitness distance correlation (FDC) [8], which
is a measure of how difficult a problem can be for GAs.
Even though FDC is used to estimate the difficulty of the
whole search space, our goal here is to use it as a measure
of the difficulty of the portion of the search space which
is being explored by each island. Formally, given a set F =
{f1, f2, . . . , fn} of n individual fitnesses and a corresponding
set D = {d1, d2, . . . , dn} of the n distances to the nearest
global maximum, the FDC is defined as:

fdc =
1
n

Pn
i=1(fi − f̄)(di − d̄)

σF σD
(1)

where f̄ and d̄ are the means of the fitness values and the
distances to the nearest global maximum, respectively, while
σF and σD denote the standard deviations. FDC determines
how closely F and D are correlated. For a maximization
problem like the Max-Cut, if the fitness increases when the
distance to the optimum becomes smaller, then the land-
scape is expected to be easily explored by the GA, and the
fdc should be close to -1.0. On the contrary, when such a
correlation does not exist, i.e., fdc is close to zero, a GA
can find difficulties. In each island, a local FDC value is
computed with its local subpopulation and the distance to
its best-known solution (values for F and D).

The way in which the FDC information is included in
HdGA is as follows. When the fdc value is close to -1.0
value in an island, that island begins to diminish the in-
teraction with other islands, i.e., it sends individuals to its
neighboring subpopulation with less frequency (and so re-
ceiving fewer inmigrants). We are assuming that the is-
land is in a region of high quality solutions so therefore

the search has to be further intensified (increase exploita-
tion with less frequent migrations). On the other hand, the
strategy tries to promote the exploration (more frequent mi-
grations) when fdc is far from -1.0. In particular, we have
considered the FDC values not only at the current epoch,
but in two consecutive epochs, so that the tendency of the
value is taken into consideration. That is, during two consec-
utive migration steps, the average ¯fdc is computed. Then,
the HdGA changes the period in the island to its closer larger
power of two if ¯fdc < −0.75. On the contrary, the period
changes to its closer smaller value which is power of two. Of
course, migration periods assume discrete values in the range
[mig periodmin, mig periodmax]. This criterion is inexpen-
sive to compute, since it checks simple conditions based on
information already available in any standard GA, like the
fitness values and the Hamming distances, and can be used
to adjust additional parameters.

The execution is initialized by randomly choosing a power
of two mig period in the range [1,512] for each island. The
bounding cases are the total communication (migration pe-
riod equals to one) or almost independent execution (migra-
tion period equals to 512). When the current value is equal
to one and the algorithm needs to change to the next lower
one, the algorithm does not make any change in the migra-
tion period at all. The same action is triggered when the
current value is 512 and the algorithm needs to increase the
value to the next one.

3. HDGA FOR THE MAX-CUT PROBLEM
The Max-Cut problem can be formally defined as follows.

Given an undirected graph with edge weights, this problem
consists in partitioning the set of nodes of a weighted graph
G = (V, E), where V = {1, . . . , n} is the set of nodes and
E = {(i, j) : i, j ∈ V } the set of edges, into two disjoint
subsets S and S = V − S, such that the sum of the weights
of the edges from E that have one endpoint in S and the
other in S, is maximized. Let wi,j be the weight associated
with edge (i, j) ∈ E. Then, the next function has to be
maximized:

cut(S, S) =
X

i∈S,j∈S

wij (2)

In order for HdGA to address the Max-Cut problem, we
have used the following solution encoding and search oper-
ators:

Representation. A solution to this problem can be rep-
resented as a binary vector x=(x1, x2, . . . , xn) of length n,
where xi corresponds to a node. Each vector encodes a par-
tition of the nodes, with xi=1 meaning xi ∈ S and xi=0
meaning xi ∈ S.

Initialization. The algorithm creates several initial solu-
tions using the constructive heuristic proposed by Kahru-
man et al. [9], called SG3. This method is fast and generates
solutions with considerable quality and diversity. SG3 was
also chosen in [2] to be the constructive heuristic for their
SA and TS and seems to be a key component in all modern
well-performing algorithms for the Max-Cut.

Genetic operators. HdGA uses the well-known uniform
crossover (UX) and bit-flip mutation operators.

Local Search Heuristic. After genetic operators (crossover
and mutation), the newly created individuals undergo a lo-
cal optimization procedure with a certain probability. When
applied on a solution x, the procedure starts by creating a set

692



Algorithm 2 Local Search
T ← V ;
while ( T �= ∅) do

i← random vertex in T ;
if i ∈ S and σS(i)− σS(i) > 0 then

S ← S \ {i};
S ← S ∪ {i};

end if
if i ∈ S and σS(i)− σS(i) > 0 then

S ← S \ {i};
S ← S ∪ {i};

end if
T ← T \ {i};

end while

T of all nodes i (for i = 1, . . . , n). The iterative procedure
randomly selects a node i from the set T and then changes
that node from one subset to the other in x according to
the following rules: i) if xi = 0 and σS(i)− σS(i) > 0 then
xi = 1, and ii) if xi = 1 and σS(i)−σS(i) > 0 then xi = 0,
where, for each node i : 1, . . . , n, σS(i) =

P
j∈S wij and

σS(i) =
P

j∈S wij [6], σS(i)−σS(i) represents the change in
the objective function associated with moving a node i from
one subset of the cut to the other. All possible moves of a
solution are investigated by making a single pass through all
the nodes. The current solution is replaced by the improved
one. The pseudo-code of the local search procedure is given
in Algorithm 2. This algorithm is an efficient variation of the
local search phase proposed in [6] which has O(n2) complex-
ity. The difference is that our local search procedure makes
one single pass through all the nodes, i.e., so its complexity
is O(n).

4. EXPERIMENTATION
In this section, the experimentation conducted to assess

the performance of HdGA on the Max-Cut problem is pre-
sented. We detail the algorithmic parameterizations, the
instances used, and, finally, the analysis of the results.

4.1 Parameterization
The global population of all evaluated models is composed

of 512 individuals and there are 16 islands with 32 individ-
uals each (μ). The maximum number of generations is fixed
to 6500. Each parent is selected by a binary tournament.
In every island, the number λ of created offspring is 32 at
each iteration. The UX crossover is applied with a prob-
ability of 0.65, the bit-flip mutation is applied to all new
generated individuals with a rate of 1/|V | per bit, and the
local search procedure is applied with a probability of 0.2.
The next population is built up from the (μ + λ) individ-
uals using fitness proportional selection. The distribution
scheme of islands is based on a unidirectional ring topology
with asynchronous communication. The individuals are in-
tegrated into the population whenever they arrive. A copy
of the best individual is sent to the neighboring subpopula-
tion, while the target island selects the worst individual to
be replaced with the incoming one (only if it has better or
equal fitness).

The algorithms are implemented in MALLBA [5], a C++
software library. Our computing system is a cluster of 8
machines with AMD Phenom8450 Triple-core Processor at
2GHz with 2 GB of RAM, linked by Gigabit, under Linux
with 2.6.27-4GB kernel version. Each island is physically
run on a separate processor.

Table 1: Max-Cut instance description.
Instances |V| Density (%)

G1 - G2 - G3 800 6.12
G11 - G12 - G13 800 0.63
G14 - G15 - G16 800 1.58
G22 - G23 - G24 2000 1.05

4.2 Instances
For our experiments we used the set of instances gener-

ated by Helmberg and Rendl [7]1. In particular, we use a
set of widely used graphs. They consist of toroidal, planar
and randomly generated graphs of varying sizes and den-
sities, with weights taking values 1, 0, or -1. The size of
the graphs (|V|) varies from 800 to 3000 nodes meanwhile
the density fluctuates from 0.17 % to 6.12 % (see Table 1
for more details). Recent works such as [2], [6], or [12], all
used these graphs in their experiments, so it is a convenient
election for comparison purposes.

4.3 Results
In this section we will compare the results produced by

the proposed HdGA and a parallel homogeneous GA, called
HomdGA (which performs the same kind of search on differ-
ent sets of greedy generated individuals) in order to show the
performance of the HdGA as an competitive search method.
As we are interested in evaluating the self-adapted, FDC-
based migration schedule, in the case of HomdGA we re-
port a set of values for the migration period ranging from 1
(maximum coupling among islands) to 512 (fairly isolated is-
lands), in order to characterize the effect of the migration pe-
riod in the quality of the solutions obtained. Consequently,
HomdGAi means a homogeneous approach with period i.
All the results presented are averaged over 30 independent
runs.

Figure 1 shows the relative error with respect to the best-
known solution in the literature for each instance. A first
conclusion is that HdGA is very competitive in terms of so-
lution quality. The figure shows that the HdGA column (the
darker one on the right of each group) has been able to reach
solutions with the same (or even lower) error rates than the
HomdGAs. Averaging all the error rates of HomdGAs over
all the instances, a value of 0.27% is obtained, that is, on
average, HomdGAs have reached solutions which are 0.27%
far from the best-known solution. The same value for HdGA
is 0.28%, what makes the difference very tight, but with the
benefits of the pre-tuning time reduction. Indeed, HdGA
needs 26 hours of execution to obtain the results from the 30
independent executions for all the graph set tackled in this
work (see Table 1). For the HomdGA, five values has been
considered for the migration period, so therefore 26×5 = 130
hours of computation have been required. This means that
HdGA has allowed us to avoid running 4 configurations, thus
saving 104 hours of pre-tuning.

We also want to report that HdGA has been not only able
to hit the best-known solution for instances G1 and G3, but
also to improve the best-known solution for instance G16.
This is a remarkable result, since it is a long lasting very
studied problem and because our true goal was to propose
an algorithm that reduces pre-tuning. Hence HdGA is not
just a simple heterogeneous version, but a cutting edge al-
gorithm.

Figure 2 shows the mean number of generations that dGAs
need to computer their best solution. The results of HdGA

1
publicly available at http://www.stanford.edu/yyye/yyye/Gset/
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are very promising. Indeed, in 9 out of the 12 instances
studied, HdGA required a lower number of generations to
converge towards its solution with the maximum (best) fit-
ness value than any of the HomdGAi (all but G1, G22, and
G24). The differences are remarkable for G2 and G11, in
which the reductions is around 40% of the HomdGAs. It is
important to note that this is an additional source of time
savings (not just the pre-tuning), since high quality solutions
for the problem instances are computed faster with HdGA.

5. CONCLUSIONS AND FURTHER WORK
This work has presented a preliminary approach on using

fitness landscapes for dynamically adjusting the migration
period of HdGA (Heterogeneous dGA). The goal of our pro-
posal is to reduce the pre-tuning of such migration param-
eter, and therefore, to achieve a reduction in the computa-
tional times. We have evaluated HdGA over 12 instances of
the Max-Cut problem and compared its suitability to homo-
geneous algorithms considering five different pre-tuned con-
figurations. The results have shown that HdGA has been
able to compute competitive solutions in terms of quality
(the averaged error rate with respect to the best-known solu-
tion is 0.28% against the 0.27% of the pre-tuned algorithms),
but saving more than 100 hours of computation. A second
interesting finding is that HdGA has been the fastest algo-
rithm to converge towards high quality solutions. As future
work, we plan to extend this work with additional land-
scape measures such as the negative slope coefficient, and
to further evaluate this approach over different optimization
problems.
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