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ABSTRACT
Currently, researchers in the field of Evolutionary Algo-
rithms (EAs) are very interested in competitions where new
algorithm implementations are evaluated and compared.
Usually, EA users perform their algorithm selection by fol-
lowing the results published in these competitions, which
are typically focused on average performance measures over
benchmark sets. These sets are very complete but the func-
tions within them are usually classified into binary classes
according to their separability and modality. Here we show
that this binary classification could produce misleading con-
clusions about the performance of the EAs and, conse-
quently, it is necessary to consider finer grained features so
that better conclusions can be obtained about what scenar-
ios are adequate or inappropriate for an EA. In particular,
new elements are presented to study separability and modal-
ity in more detail than is usually done in the literature. The
need for such detail in order to understand why things hap-
pen the way they do is made evident over three different
EAs.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Searchs—Heuristic methods

General Terms
Algorithms
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1. INTRODUCTION
Evolutionary Algorithm (EA) competitions take place,

typically, during EA workshops and conferences, such as
GECCO (EvoDOP-2007) or CEC [16, 9, 17]. Researchers
from different disciplines use them as a reference to select
an EA by following the results published in these competi-
tions, which are typically focused on average performance
measures over a benchmark set. Once the “winner” EA has
been selected, the most common procedure users follow is
to tune its configuration and apply it trying to solve their
problem until a successful solution is obtained [19, 12]. If
this initial selection fails, the next step is to attempt to ad-
dress the problem with a different EA after consulting the
literature of the topic. This is a highly time-consuming and
frustrating trial and error process as these selections could
prove to be completely wrong if the most acclaimed algo-
rithms fail in a particular feature required for solving the
specific problem the user faces. In order to try to minimize
this problem there is no doubt that it is necessary to in-
crease our knowledge about how an EA behaves. One way
of doing this is by increasing the detail of the analysis of the
benchmark functions used to analyze EA response.

Although in EA competitions the comparisons of the al-
gorithms are performed fairly by specifying a common stop-
ping criterion, problem size, initialization scheme, etc. and
even though the benchmark sets are very complete, we have
detected shortcomings in the way the functions in these
sets are characterized. Dimensionality, modality and sep-
arability are the basic features that are taken into account
but, typically, very superficial classifications are considered
(separable/non-separable, unimodal/multimodal, etc.)and,
consequently, it is often not clear why an EA performs bet-
ter over some functions and worse over others leading to
researchers focusing just on how many functions are solved
and how fast the algorithms are. The success and the perfor-
mance of an EA over a function are closely related to these
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three features through the way in which its search strategy
is adapted to the morphology of the fitness landscape. Thus,
a finer grained analysis of the landscape features will allow
the designer to obtain more reliable and usable conclusions
about the behavior of their EAs.

This paper proposes a set of additional considerations re-
lated to separability and modality in order to achieve this
finer grained view of benchmark functions and EA behav-
ior. To determine which ones are the most appropriate
and test their practical relevance, we have chosen an exten-
sive benchmark function set of real-parameter optimization
problems[5]. These functions were classified according their
separability and modality in a binary way in EA compe-
titions. The benchmark set contains 36 scalable and non-
scalable functions that permit studying the differences be-
tween the fitness landscapes in depth so as to allow linking
these differences to EA performance.

The remainder of the paper is structured as follows: Sec-
tion 2 describes the experimental setup used in this work
to analyze the relevance of the proposed landscape features.
Sections 3 and 4 are devoted to the description of the specific
landscape features in terms of separability and modality, and
with the presentation of empirical results that confirm their
relevance over three well-known EAs. Finally, the main con-
clusions of this work are presented in Section 5.

2. EXPERIMENTAL SETUP
To illustrate the practical relevance of the landscape fea-

tures proposed in this work, three EAs were chosen. Two of
them are the winners of most EA competitions in the last
few years: Differential Evolution (DE) [15] and the Covari-
ance Matrix Adaptation - Evolutionary Strategy (CMA-ES)
[3]. Additionally, a Real-Coded Genetic Algorithm (RCGA)
[8] is chosen as a typical EA reference. The particular con-
figuration parameters of each algorithm are the ones rec-
ommended by their authors in [14], [3] and [8]. For each
algorithm-function-dimension combination, 25 independent
runs were executed. The scalable function set was analyzed
considering 10, 30 and 50 dimensions. The stopping criterion
of each run is based on the maximum number of function
evaluations (FEs) and was set to 10000 · n, where n is the
dimension of the problem.

To study the results provided by the algorithms we have
proposed the Combined Error and Performance Measure
(CPEM) [4]. It provides combined results on the error level
and the performance of the algorithms at a glance. The
CPEM is calculated as follows:

CPEM =

⎧⎨
⎩
ε · FEs

FEsmax
if FEs ≤ FEsmax

absolute error otherwise
(1)

Where, ε is the threshold to consider that a function is solved
(the global optimum is found), in this work it has been set
to 10−6. All the results of tables 2 and 4 are provided in
terms of average CPEM over the 25 independent runs. In
these tables the lowest CPEM the best result.

3. SEPARABILITY
Separability refers to the dependencies among the param-

eters of a function and it can be related with the biologi-
cal concept of epistasis [13]. According to separability, the
competitions’ benchmark sets are usually divided into Sepa-

rable and Non-Separable functions. Separable functions [11]
are those where all the variables are independent and, as a
consequence, the optimization process of an n-dimensional
Separable function (f(x) : Rn −→ R) could be divided into
n 1-D optimization processes over each parameter xi, where
0 ≤ i < n. Non-Separable functions [3] are those where
dependencies are present and all the variables should be op-
timized during the same process because of the relationships
between them.

Two facts lead us to analyze the function separability in
depth. On one hand, after analyzing the results provided
by the three EAs considered here using the typical binary
classification of the benchmark functions into Separable and
Non-separable, the situation is very confusing. For instance,
Fig. 1(a) shows the results provided by the RCGA over the
whole benchmark set (extracted from Tables 2 and 4). This
figure displays the average CPEM error obtained for each
function organized into 4 classes: functions with less than 10
dimensions, functions with 10, 30 and 50 dimensions. Square
points correspond to Non-Separable landscapes while plus
symbols correspond to Separable ones. The horizontal line
at 10−6 corresponds to the threshold used to consider that
a run has been solved. As shown, it is difficult to decide on
the behavior of the RCGA over the Non-Separable function
set due to the fact that solved and unsolved cases appear for
all dimensions (separable functions are all solved but 3). On
the other hand, sometimes it is difficult to classify a function
in terms of separability because there is no consensus in the
literature on how to do it. For example, Ackley’s function [1]
is sometimes classified as Separable [18] and in some other
instances as Non-Separable [2].

Thus, after analyzing the results of the RCGA over Non-
Separable functions, we realized that there are two different
types of functions within this subset. It includes functions
that are separable, but not linearly, and other functions that
are Non-separable. Consequently, we propose a different
classification in terms of separability that organizes func-
tions into linearly separable functions (L-Separable), non-
linearly separable functions (NL-Separable) [20] and Non-
Separable functions.

To characterize an objective function in terms of these cat-
egories is not easy. Here we have made use of an empirical
method although others are possible. The basic idea is to
fix the values of n-1 parameters of an n parameter function
and iterate the remaining parameter between the low and
the high bounds for different values of the fixed parameters.
To better understand how the algorithm works, Fig. 2 dis-
plays 2-D plots of the three types of separability considered
here. Thus, if a function is linearly separable (L-separable),
for different values of these n-1 parameters, it preserves the
same graph shape shifted in the y-axis (see Fig. 2(a)). Fol-
lowing this reasoning, non-linearly separable functions (NL-
separable hereafter) are those functions with different shapes
(different search space) but with the optimum always in the
same point (see Fig. 2(b)); and non-separable functions are
those with different shape and different optimum (see Fig.
2(c)).

This method has allowed us to classify the functions of the
benchmark set into the aforementioned three categories. Af-
ter the name of each function in tables 2 and 4 we have added
an L, NL or N to indicate if the function is L-Separable,
NL-Separable and Non-Separable, respectively. The case of
the Griewank function must be highlighted. Its separability
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(a) Binary separability classification

10−8

10−6

10−4

10−2

100

102

104

<10D 10D 30D 50DC
P
E
M

va
lu
e,

lo
g
a
ri
th
m
ic

sc
a
le

(a
.u
.)

Dimension

Proposal Classification

L-Separable function set
NL-Separable function set
Non-Separable function set

CPEM threshold

(b) New proposal for separability classification

Figure 1: Two different proposals for separability classification.

changes as the dimensionality of the problem increases [10],
going from Non-Separable when we deal with 10 dimensions
to NL-Separable in the other two cases.

The behavior and success of an EA is closely related to
the type of separability of the functions it acts on. Thus, the
search process to optimize an L-Separable function could be
carried out as independent processes over each parameter, in
other words, one parameter at a time. That is also the case
for NL-Separable functions where the parameters present
non-linear dependencies among them, but the optimal value
of each one may be obtained using independent optimiza-
tion processes [20]. This does not happen for Non-Separable
functions, where the goodness of a parameter depends on the
value of some other parameters of the function. What must
be highlighted here is that NL-separable and Non-separable
functions, typically classified together, do not require the
same type of search method.

Fig. 1(b) displays the response of the RCGA over the
whole benchmark set again, but now classifying the func-
tions into these three categories (crosses correspond to NL-
separable functions). It can be observed that the algorithm
performs successfully in most L and NL-Separable functions,
failing only in 7 cases (and this is due to other issues related
to modality). However, in the case of Non-separable func-
tions its behavior degrades. Now it can be clearly seen that
there are no squares in the region corresponding to solved
functions for dimensions higher than 10. Consequently, we
can now conclude that the RCGA has problems with Non-
separable landscapes, that become worse as dimensionality
increases. This is due to the fact that this RCGA implemen-
tation does not take into account the dependencies between
parameters during the optimization process.

Using this classification of the benchmark functions, the
behavior of EAs can now be analyzed with confidence. For

example, Fig. 3 displays the results obtained by the three
algorithms considered here for the Non-separable functions
of the benchmark set. It can be observed that the RCGA
performs clearly worse than the other two. The CMA-ES
performance [3] is successful due to the fact that it takes
into account the dependencies among variables it performs
(see results in Table 2 and 4). This algorithm approximates
a covariance matrix of the function parameters representing
the relationships between them. The Fig. shows that the
behavior of DE in Non-Separable landscapes is very similar
to that of CMA-ES, although CMA-ES shows better per-
formance as it is less affected by dimensionality (DE fails
5 of 6 cases for dimensions higher than 10, as displayed in
Fig. 3 looking at the square points). It is interesting to note
that even though DE does not provide a mechanism to use
the dependencies among variables in the generation of new
individuals, its search process can be adjusted to deal with
different types of separability. One of the parameters that
regulates the behavior of DE, the cross-over rate (CR), per-
mits determining how much of the genotype is changed each
generation. Low values of CR cause few parameter changes,
which favors solving L and NL-Separable functions. The op-
posite behavior takes place when CR is set to a high value,
favoring the solution of Non-Separable functions. In this
work the CR parameter is set to 0.1 for L and NL-Separable
functions and to 0.9 for Non-Separable function, as the au-
thors recommend in [14].

To sum up, separability is a highly relevant feature in the
performance of EAs. It is closely related to the way the
search process is carried out by the evolutionary operators
in each EA. However, the classification of benchmark func-
tions in terms of separability presented in many papers in
the literature and used in all the EA competitions is some-
times confusing, mixing different types of functions, such
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Figure 2: 2-D representation of the three types of
separability considered

as NL-Separable and Non-Separable functions, in the same
class when the search strategy required to solve them is very
different. Here we propose using a finer grained classification
of benchmark functions into three groups: L-separable, NL-
separable and Non-separable in order to facilitate explaining
the behavior of the different algorithms.

4. MODALITY
As commented in the introduction, the second landscape
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Figure 3: Results of the three algorithms over the
Non-Separable function set.

feature typically considered in EA competitions is modality.
Functions are usually divided into unimodal and multimodal
and the behavior of the EAs is analyzed considering these
two categories. A function is called unimodal if it displays
a single global optimum and no local optima. On the other
hand, multimodal functions present several local and / or
global optima. Unimodal functions are, in general, easy to
solve by a population based algorithm, and thus are mainly
used to test the convergence speed of the algorithms.

Although from the previous statement it may seem that
every unimodal function presents the same difficulty to every
EA, here we will show that this assertion must be revised.
In fact, it is well-known that needle-in-a-haystack (NiAH)
[7] or a long path problem represent a challenge to EAs.
Thus, it was necessary to establish what landscape feature
could be used to account for the differences of behaviors of
EAs over different unimodal landscapes. It turned out to be
the longest path to the optimum, which is a property that is
easy to measure for the different functions of the benchmark
set used here and constitutes a difficulty indicator. To com-
pute it, a local search method was used: the length of the
path from the corners of the landscape to the optimum value
were measured as the mean number of steps after 25 runs
starting at each corner (xi = (x1

i , . . . , x
n
i ), x

j
i ∈ −1.0, 1.0).

The results of its application are shown in Table 1 for the
unimodal functions of the benchmark set.

Fig. 4 displays the CPEM results of the three EAs con-
sidered here over the unimodal subset as a function of the
longest path to the optimum (extracted from Table 1). As
shown, the performance of the three EAs degrades as the
path length increases, without any success for lengths above
1000. The RCGA seems to be worse than the other two al-
gorithms, because it starts to fail with lengths of 400. Both
the DE and CMA-ES show a successful overall performance
over unimodal landscapes. They fail only in 6 and 3 out
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of 30 cases respectively, as shown in Table 2. The DE im-
plementation used here can adjust the mutation step size
during the optimization process, adapting it to the land-
scape. The case of the CMA-ES is similar. The mutation
step size is adapted depending on previous step sizes during
evolution, that is, when mutations are carried out consis-
tently in the same direction, the step size is increased to
cover the same distance in less steps. Obviously, this also
increases the convergence speed. This strategy makes this
algorithm the fastest one, as can be seen in Table 2 where the
CMA-ES outperforms the other two algorithms. There are
three exceptions: the Easom, Perm and Schwefel 2.21 func-
tions. These three functions share the feature of presenting
broad plateaus with very little information. Without this
information it is very difficult for the CMA-ES to generate
the covariance matrix, so the performance of the algorithm
becomes worse.

Thus, the longest path to the optimum is a relevant land-
scape feature to explain EA performance in unimodal land-
scapes and it should be considered for characterizing the
algorithms properly.

Multimodal functions are those that contain many local
and global optima. The complexity of these functions is
usually measured only by the number of local optima they
have, and this is not always enough to explain the behavior
of EAs over them. For example, as shown in Fig. 5(a), it
is hard to explain the behavior of the CMA-ES algorithm
over the multimodal functions of the benchmark set using
only the number of local optima. Thus, we propose the con-
sideration of more detailed morphological features. These
features are three: size of the optimum and the largest at-
traction basins (being this size the frequency with which a
point of the search space ends a local search at an optima)
and maximum distance between attraction basins.

An algorithm has been developed [4] based on the dis-
tribution of attraction basins in multimodal landscapes to
estimate the values for these three features as an extension
of the work of [6]. The results provided by this algorithm
over the multimodal function subset are displayed in Table
3. Due to the computational complexity of this method,
these results for the scalable function set are an estimation
obtained by analyzing 5-D fitness landscapes. In the non-
scalable function set the results are obtained using their spe-
cific dimensionality.

As expected, different EAs are affected by different fea-
tures of the distribution of the attraction basins of a fitness

Table 1: Longest path length to the optimum.
Function Path length

Perm 1060.46
Schwefel 2.21 573.48
Colville 508.30
Schwefel 1.2 453.02
Schwefel 2.22 265.15
Axis Parallel 224.97
Zakharov 220.41
Sphere Model 204.12
Matyas 188.31
SumOf 142.14
Step 126.60
Easom 24.40

Table 2: Results provided by the three analyzed al-
gorithms over the unimodal functions subset

Function D
CPEM

RCGA CMA-ES DE

Axis 10 1.55·10−7 2.11·10−8 7.34·10−8

Parallel-L 30 2.21·10−7 2.58·10−8 8.98·10−8

50 4.27·10−7 3.03·10−8 9.88·10−8

Schwefel 10 1.66·10−7 3.27·10−8 9.19·10−8

2.22-L 30 2.36·10−7 5.83·10−8 1.01·10−7

50 6.10·10−7 1.09·10−7 1.08·10−7

Sphere 10 1.53·10−7 1.82·10−8 6.90·10−8

Model-L 30 1.85·10−7 1.76·10−8 8.08·10−8

50 3.45·10−7 1.74·10−8 8.92·10−8

Step-L 10 6.29·10−8 9.92·10−9 1.47·10−8

30 9.02·10−8 2.44·10−8 3.51·10−8

50 1.01·10−7 4.99·10−8 3.88·10−8

SumOf-L 10 4.60·10−8 1.24·10−7 1.69·10−8

30 3.10·10−8 2.89·10−8 2.13·10−8

50 2.62·10−8 4.46·10−8 1.97·10−8

Easom-NL 2 1.52·10−7 1.95·10−1 2.72·10−7

Schwefel 10 2.16·10−2 1.99·10−7 3.14·10−7

2.21-NL 30 6.29·10−3 9.88·101 5.82·10−7

50 1.08·10−1 1.00·102 7.57·10−7

Colville-N 4 4.36·10−1 4.81·10−8 1.13·10−7

Matyas-N 2 1.60·10−7 1.40·10−8 3.86·10−8

Perm-N 10 7.80·10−2 8.40·10−2 1.56·10−6

30 1.38·100 1.61·101 3.74·100
50 2.75·100 2.26·101 5.29·1099

Schwefel 10 2.71·10−1 2.74·10−8 1.44·10−7

1.2-N 30 3.99·101 5.08·10−8 4.73·10−7

50 3.98·102 7.19·10−8 2.26·10−6

Zakharov 10 7.66·10−5 2.46·10−8 1.12·10−7

(N) 30 5.63·10−1 5.52·10−8 5.47·10−7

50 1.56·101 8.99·10−8 1.06·100

landscape. For example, Fig. 5(b) exemplifies the fact that
the performance of the CMA-ES algorithm is closely related
to the maximum distance between the optimum attraction
basin and all the attraction basins of the function, getting
worse as this distance increases. This behavior is due to the
highly exploitative strategy of the CMA-ES. In functions
where the attraction basins are spread out over the fitness
landscape, the algorithm should explore it in order to reach
the attraction basin containing the optimum and then ex-
ploit it to reach the optimum. A second conclusion that
can be extracted from this feature is that the DE algorithm
outperforms the results of the CMA-ES on those functions
where the attraction basins are spread out over the whole
search space ( Table 3 displays the maximum distance be-
tween attraction basins).

Another interesting feature to analyze in multimodal func-
tions is the relationship between the optimum and the
largest attraction basins, i.e., if those attraction basins are
the same or not. According to the size of the attraction basin
containing the optimum in the functions of the benchmark
set used here, when it is smaller than a 10% of the search
space (see Table 3), an exploratory behavior is needed to
reach this attraction basin, and after this, exploit it until
the optimum solution is reached. This is the reason why the
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Figure 4: Results provided by the three algorithms over the unimodal functions subset characterized by the
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Figure 5: Results provided by the CMA-ES algorithm in the multimodal function subset.

DE outperforms the behavior of the CMA-ES over those
functions with small optimum attraction basins (see results
on Table 4). On the other hand, when the optimum attrac-
tion basin is large enough to be easily reached, the CMA-ES
results improve on those of the DE because of its exploita-

tion capabilities. According to the relationship between the
largest and the optimum attraction basins, when the opti-
mum attraction basin is not the largest one, a more explo-
rative behavior is required. In this type of functions, algo-
rithms like the CMA-ES tend towards the largest attraction
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Table 3: Proposed features of the multimodal func-
tions.

Function
Attr. Basin Size Max.
Largest Optima Distance

Aluffi-Pentini’s 8.60·10−1 8.60·10−1 7.00·10−2

Becker and Lago 1.00·100 1.00·100 0.00·100
Bohachevsky 1 7.54·10−1 7.54·10−1 9.00·10−3

Cosine Mixture 2.60·10−2 2.60·10−2 2.15·10−1

Rastrigin 8.00·10−3 8.00·10−3 4.86·10−1

Schwefel 2.36·10−1 2.96·10−5 9.20·10−1

Ackley’s 1.00·10−3 1.00·10−3 5.00·10−1

Griewank 1.00·10−3 2.00·10−4 4.55·10−1

Levy 5.77·10−1 5.77·10−1 2.61·10−1

Penalized 1 1.28·10−1 1.28·10−1 1.13·10−1

Penalized 2 1.74·10−1 1.74·10−1 5.00·10−2

Beale 4.69·10−1 4.69·10−1 5.91·10−1

Bohachevsky 2 5.35·10−1 5.35·10−1 9.00·10−3

Dekkers & Aarts 8.79·10−1 8.79·10−1 2.91·10−1

Goldstein Price 5.03·10−1 5.03·10−1 4.24·10−1

Hartman 3 6.22·10−1 6.22·10−1 4.66·10−1

Hartman 6 6.25·10−1 2.74·10−1 4.50·10−1

Kowalik 1.28·10−1 2.87·10−4 4.27·10−1

Rosenbrock 3.76·10−1 3.76·10−4 2.20·10−1

Shekel Fam. 5 3.12·10−1 2.61·10−1 3.89·10−1

Shekel Fam. 7 2.95·10−1 2.95·10−1 3.77·10−1

Shekel Fam. 10 2.40·10−1 2.40·10−1 3.81·10−1

Shekel’s Foxholes 6.70·10−2 6.70·10−2 4.87·10−1

Six Hump 2.65·10−1 2.32·10−1 1.40·10−1

basins. The results of the CMA-ES confirm the fact that
an exploitative behavior is not recommended. With this
type of strategy, it is easier to reach the largest attraction
basin than the optimum one. There is, however, an excep-
tion that also reinforces the importance of considering the
distance between attraction basins. In the SixHump func-
tion the optimum attraction basin is smaller than the largest
one but the distance between them is short enough to per-
mit “jumping” from one to the other allowing the CMA-ES
to obtain more accurate results than the DE. The opposite
behavior occurs on the other functions where the distance is
large and the DE outperforms the CMA-ES.

Summarizing, as we have shown in this section, more in-
formation than is usually provided about the modality of
the benchmark functions used to characterize EAs is needed
in order to characterize their behavior appropriately. This
extra information is required both in unimodal and multi-
modal functions. The path length in unimodal functions
is useful to determine the difficulty of the functions: the
longest the path the harder to find the solution for an EA
without a strategy that adjusts the mutation step automat-
ically, like the RCGA implementation used here. Regarding
multimodal functions, the number of optima does not pro-
vide enough information. Functions with a high number of
local optima that are not spread out over the search space
are easier to solve than functions with few local optima but
widely spread out over the landscape. Moreover, the be-
havior of the EAs is highly dependent on the size of the
attraction basins. Functions where the optimum attraction
basin is not the largest one are more difficult than those
with very large optimum attraction basins, without taking
into account the number of them.

Table 4: Results provided by the three analyzed al-
gorithms over the multimodal functions subset

Function D
CPEM

RCGA CMA-ES DE

Aluffi-
2

6.64·10−8 2.57·10−8 3.94·10−8

Pentini’s-L

Becker
2

7.51·10−8 1.61·10−8 5.06·10−8

and Lago-L

Bohach.1-L 2 9.62·10−8 3.56·10−8 5.66·10−8

Cosine 10 9.28·10−8 1.18·10−2 4.98·10−8

Mixture-L 30 1.28·10−7 5.20·10−1 5.90·10−8

50 2.04·10−7 1.41·100 6.47·10−8

Rastrigin-L
10 6.15·10−7 1.09·101 1.18·10−7

30 6.29·10−6 5.86·101 1.59·10−7

50 5.38·10−7 1.50·102 3.78·10−7

Schwefel-L
10 5.40·10−2 8.98·102 1.66·10−7

30 7.06·10−5 3.69·103 3.27·10−7

50 4.39·10−7 6.63·103 5.70·10−7

Ackleys-L
10 2.21·10−7 5.31·10−8 1.10·10−7

30 2.93·10−7 1.01·10−7 1.01·10−7

50 7.67·10−7 1.49·10−7 1.49·10−7

Griewank 30 4.05·10−7 9.86·10−4 6.18·10−8

NL 50 4.50·10−3 1.91·10−7 9.29·10−8

Levy-NL
10 9.54·10−8 7.92·10−2 5.03·10−8

30 1.41·10−7 3.33·100 6.18·10−8

50 2.18·10−7 1.50·101 6.95·10−8

Penalized1 10 1.34·10−7 6.81·10−8 6.00·10−8

NL 30 1.87·10−7 1.40·10−7 6.98·10−8

50 2.58·10−7 4.52·10−3 7.76·10−8

Penalized2 10 2.18·10−7 7.81·10−8 6.27·10−8

NL 30 2.42·10−7 2.20·10−3 1.21·10−7

50 3.39·10−7 2.64·10−3 8.51·10−8

Beale-N 2 2.30·10−7 3.77·10−8 4.70·10−8

Bohach.2-N 2 9.85·10−8 3.52·10−8 6.26·10−8

Dekkers
2

4.38·10−8 1.41·10−8 1.85·10−8

& Aarts-N

Goldstein
2

1.13·10−7 3.01·10−8 5.25·10−8

Price-N

Griewank-N 10 1.03·10−2 3.20·10−2 3.93·10−7

Hart3-N 3 3.77·10−8 1.71·10−8 2.94·10−8

Hart6-N 6 1.01·10−2 5.30·10−3 1.06·10−1

Rosenbrock 10 5.28·100 2.45·10−7 6.47·10−7

(N) 30 2.38·101 7.60·10−7 8.48·10−1

50 3.03·101 4.78·10−1 3.67·101
Kowalik-N 4 5.13·10−4 1.32·10−4 3.14·10−4

ShekF5-N 4 2.09·100 7.03·10−1 2.07·10−7

ShekF7-N 4 9.66·10−1 1.33·10−7 1.35·10−7

ShekF10
2

2.68·10−1 1.34·10−7 1.72·10−7

N

Shekel’s
2

1.19·10−1 5.31·10−7 1.17·10−7

Foxholes-N

Six
2

5.57·10−8 1.59·10−8 5.02·10−8

Hump-N

5. CONCLUSIONS
This paper emphasizes the need for a more in depth anal-

ysis of the fitness landscapes in the functions typically used
for EA competitions with the objective of obtaining more
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useful conclusions about the behavior of the EAs over them.
This more in depth analysis is performed in this paper and
information such as the type of separability, the path length
to the optimum and the size and distance between attraction
basins is provided for a benchmark set. This information al-
lows a higher degree of knowledge regarding separability and
modality, which are the most commonly used features for
the characterization of benchmark sets in EA competitions.
In order to exemplify their usefulness, they have been ap-
plied to study the behavior of three well-known EAs showing
that this deeper analysis permits obtaining reliable conclu-
sions and relationships between the search strategy of the
EAs and their performance over different types of functions.
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