
Optimizing Stacking Ensemble by an Ant Colony
Optimization Approach

Yijun Chen
Dept. of Computing and Decision Sciences

Lingnan University
Tuen Mun, Hong Kong

yijunchen@ln.edu.hk

Man Leung Wong
Dept. of Computing and Decision Sciences

Lingnan University
Tuen Mun, Hong Kong
mlwong@ln.edu.hk

ABSTRACT
An ensemble is a collective decision making system which
applies some strategy to combine the predictions of classi-
fiers to generate its prediction on new instances. Stacking
is a well-known approach among the ensembles. It is not
easy to find a suitable ensemble configuration for a spe-
cific dataset. Ant Colony Optimization (ACO) is a pop-
ular metaheuristic approach which could be a solution to
find configurations. In this work, we propose a new Stack-
ing construction method which applies ACO in the Stacking
construction process to generate domain-specific configura-
tions. The experiment results show that the new approach
can achieve promising results on 18 datasets compared with
some well-known ensemble approaches.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Database Applications -
Data Mining

General Terms
Algorithms

Keywords
ACO, Ensemble, Stacking, Metaheuristics

1. ACO-STACKING APPROACH
In an ACO-Stacking construction task, given the base

classifiers and meta classifiers, the approach selects a config-
uration which contains a subset of the base classifiers com-
bining with a meta classifier to achieve the best performance.
Prior to the execution of the major process of ACO-Stacking,
the pool C of base classifiers is generated, which contains
m classifiers generated by the learning algorithms, C =
{c1, · · · , cm}. For each classifier ci, its local information
ηi is initialized from a pre-test on the whole training set.
The metric: precision of each classifier from the pre-test is
selected as the local information ηi in this approach and
it would be kept during the searching process. There are k
ants in the colony and each one is given a learning algorithm
as its meta-combining scheme. Thus each ant is a Stacking
configuration. Sj represents the configuration constructed
by the jth ant, j ≤ k. After all these settings are finished,

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

Table 1: Parameters of ACO-Stacking and GA-
Ensemble

ACO-Stacking Value GA-Ensemble Value
Colony Size 30 Population Size 30
Iterations 10 Generations 10

Evaporation Rate 0.1 Elite Rate 0.1
CC 10 Cull Rate 0.1

Crossover Operation Uniform
Crossover Rate 0.5
Mutation Rate 0.1

the ACO searching process will iteratively execute. In the
first iteration, each ant is initialized with a base classifier
randomly and the accuracy αSi of this configuration is cal-
culated on an independent validation set. In the following
iterations, when the jth ant begins its search, it selects a
classifier c’ from the pool C to its current configuration Sj

by using the products of the pheromone and the local infor-
mation of the ants. The possibility of a classifier ci to be
selected by the jth ant is given in equation 1.

pi =

{
µi∗ηi∑m

t=1,ci 6∈Sj
µt∗ηt

if ci 6∈ Sj,

0 otherwise.
(1)

Using the roulette wheel selection of the possibilities, ci is
selected and a new configuration S′j is generated, where
S′j = Sj ∪ ci. Then S′j is tested on the same validation
set. If the αS′j is better than αSj , it will replace Sj and

the ant continues to generate a new S′j by using the same
strategy. If S′j cannot improve αSj , this ant keeps the cur-
rent configuration and its search is frozen in the iteration.
The next ant in the colony starts its searching until all ants
finish their search. During the process, once a classifier ci is
chosen and successfully added to any Sj to generate a new
S′j , the pheromone of ci will accumulate. The improvement
of accuracy from Sj to S′j is used to update the pheromone
of ci. The update rule is given in equation 2.

µ′i = µi ∗ (1− τ) + CC ∗ µi ∗
αS′j − αSj

αSj

(2)

where CC is a constant number and τ is the evaporation rate.
τ and CC are introduced to adjust the historical knowledge
and the current knowledge.

After all iterations finish, the best configuration Sbest of
the k ants will be chosen as the final Stacking configuration.
The parameters of ACO-Stacking are given in Table 1.

2. EXPERIMENTS AND RESULTS
The experiments are conducted in the Waikato Environ-

ment for Knowledge Analysis (WEKA) [6]. 18 datasets

7



Table 2: The classification accuracies of the ensembles
Dataset Bagging AdaBoost Random Forest StackingC GA-Ensemble ACO-Stacking

Balance-Scale 71.68 76.48 76.96 86.08 92.44 98.56
Breast-W 95.1359 96.4235 95.9943 97.2818 96.1373 95.1359

Chess 99.437 99.499 98.905 99.437 99.1865 99.343
Colic 67.9348 70.9239 71.4674 64.1304 75 76.9022

Credit-A 86.3768 84.3478 84.3478 86.8116 85.8116 82.3188
Credit-G 74.0 69.6 74.1 74.7 73.8 75.0

Glass 73.8318 79.4393 73.3645 69.1589 71.9626 76.1682
Heart-C 78.8779 76.8977 79.2079 84.1584 78.8779 74.5875

Heart-Statlog 80.0 80.3704 78.1481 84.1584 80.7407 75.9259
Hepatitis 83.2258 85.8065 80.6452 81.9355 83.871 87.7419

Ionosphere 93.4473 93.1624 93.4473 90.8832 91.453 89.1738
Iris 95.3333 93.3333 95.3333 95.3333 96.0 96.0

Labor 84.2105 89.4737 87.7193 89.4737 84.2105 87.7193
Lymphography 79.0541 81.0811 81.0811 83.1081 81.0811 85.8108

Sonar 74.5192 77.8846 80.7692 81.7308 85.0962 87.9808
Vehicle 76.5957 76.2411 77.0686 74.1135 75.8865 74.2317
Vote 96.3218 95.8621 95.8621 96.7816 94.9425 94.2529
Wine 94.9438 96.6292 97.191 96.0674 97.7528 98.3146

w/t/l 10/1/7 8/0/10 10/1/7 10/0/8 10/1/7 -

RAI 70.54% 32.95% 35.13% 21.4% 2.59% -

from the UCI machine learning repository [4] are used. The
datasets are Balance-Scale, Breast-W, Chess, Colic,
Credit-A, Credit-G, Glass, Heart-C, Heart-Statlog,
Hepatitis, Ionosphere, Iris, Labor, Lymphography,
Sonar, Vehicle, Vote and Wine. The ten-fold cross vali-
dation scheme is used in the experiments.

2.1 Learning Algorithms
Ten different learning algorithms in WEKA are used to

generate base classifiers. The algorithms are Naive Bayes
(NB), Logistic, IB1, IBk (k =5), KStar, OneR, PART,
ZeroR, Decision Stump and C4.5 Decision Tree (DT).
The details of the algorithms could be found in [6]. These
algorithms are also used as the meta classifier candidates for
ACO-Stacking.

2.2 Compared Approaches
In the experiments, ACO-Stacking is compared with the

following ensemble methods.
AdaBoost [5] with C4.5 DT as its learning algorithm;
Bagging [1] with C4.5 DT as its learning algorithm;
Random Forest [2];
StackingC [3] with NB, IBk and C4.5 DT as its base classi-
fiers and Multi-Response Model Tree (MRMT) as the meta
classifier;
GA-Ensemble [7]. The pool of base classifiers of GA-
Ensemble is the same as that of ACO-Stacking. The meta-
combiner is either a MRMT or a majority voting scheme.
The parameters of GA-Ensemble are listed in Table 1.

2.3 Experiment Results
Table 2 summarized the accuracies of the approaches on

the datasets and two empirical test results. The first one is
the w/t/l test, where w means ACO-Stacking outperforms
the other approach, t means their performances are the same
and l means ACO-Stacking is not as good as the other ap-
proach. It can be observed that ACO-Stacking outperforms
Bagging, Random Forest, StackingC and GA-Ensemble. On
the other hand, ACO-Stacking outperforms AdaBoost in
only eight datasets while it loses in the other ten datasets.

The second empiricical test, Relative Improvement (RAI),
is conducted to evaluate different approaches. The RAI is

calculated by using the equation 3

p =
∑ αi − α′i

αi
(3)

where αi refers to the accuracy of ACO-Stacking in the ith

data set and α′i refers to the accuracy of the approach being
compared with.

From the test results in Table 2, ACO-Stacking gains im-
provement over all the other approaches.

3. CONCLUSIONS
From the experiments and empirical tests, ACO-Stacking

outperforms Bagging, AdaBoost, Random Forest and Stack-
ingC and is slightly better than GA-Ensemble. In summary,
ACO-Stacking is a promising approach and it will be modi-
fied to improve its performance.

4. REFERENCES
[1] L. Breiman. Bagging predictors. Machine Learning,

24(2):123–140, 1996.

[2] L. Breiman. Random forest. Machine Learning, 45(1):5
– 32, Oct 2001.

[3] S. Dz̆eroski and B. Z̆enko. Stacking with multi-response
model trees. In International workshop on multiple
classifier systems, volume 2364, pages 201–211.
Springer, June 2002.

[4] A. Frank and A. Asuncion. UCI machine learning
repository, 2010.

[5] Y. Freund and R. E. Schapire. Desicion-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Science,
55(1):119–139, 1997.

[6] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data mining
software: An update. SIGKDD Explorations, 11(1):10
–18, 2009.

[7] F. J. Ordóñez, A. Ledezma, and A. Sanchis. Genetic
approach for optimizing ensembles of classifiers. In
Proceedings of the Twenty-First International FLAIRS
Conference, pages 89–94, 2008.

8




