
Tuning Parameters across Mixed Dimensional Instances: A
Performance Scalability Study of Sep-G-CMA-ES

Tianjun Liao
IRIDIA, CoDE, Université

Libre de Bruxelles, Brussels,
Belgium

tliao@ulb.ac.be

Marco A. Montes de Oca
IRIDIA, CoDE, Université

Libre de Bruxelles, Brussels,
Belgium

mmontes@ulb.ac.be

Thomas Stützle
IRIDIA, CoDE, Université

Libre de Bruxelles, Brussels,
Belgium

stuetzle@ulb.ac.be

ABSTRACT
Sep-G-CMA-ES is a variant of G-CMA-ES with lower time
complexity. In this paper, we evaluate the impact that vari-
ous ways of tuning have on the performance of Sep-G-CMA-
ES on scalable continuous benchmark functions. We have
extracted seven parameters from Sep-G-CMA-ES and tuned
them across training functions with different features using
an automatic algorithm configuration tool called Iterated
F-Race. The best performance of Sep-G-CMA-ES was ob-
tained when it was tuned using functions of different di-
mensionality (a strategy that we call mixed dimensional).
Our comparative study on scalable benchmark functions
also shows that the default Sep-G-CMA-ES outperforms G-
CMA-ES. Moreover, the tuned version of Sep-G-CMA-ES
significantly improves over both G-CMA-ES and default Sep-
G-CMA-ES.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Learning—Parameter learn-
ing

General Terms
Algorithms

Keywords
Sep-G-CMA-ES, Large scale continuous optimization, Pa-
rameter tuning, Mixed dimensions

1. INTRODUCTION
The interest for solving large scale continuous optimiza-

tion problems using modern continuous optimization algo-
rithms is increasing. CMA-ES [6] is a state-of-the-art evolu-
tionary algorithm for continuous optimization and G-CMA-
ES [1], as an improved variant of CMA-ES, has shown an
impressive performance in the real-parameter optimization
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Computation (CEC 2005) [3]. Due to the high computa-
tional cost of covariance matrix adaption, G-CMA-ES can-
not be directly used to tackle high-dimensional problems.
In fact, in a special issue of the Soft Computing journal [11]
(throughout the rest of the paper, we will refer to this spe-
cial issue as SOCO), G-CMA-ES was investigated for scal-
able functions with up to 1000 dimensions. However, due to
its time complexity, G-CMA-ES was not applied to the 1000
dimensional benchmark functions.

Recently, Sep-G-CMA-ES, which is a modification of G-
CMA-ES with lower time complexity, was proposed [14].
Sep-G-CMA-ES was benchmarked on BOBB-2009 functions
[4] but only on functions of up to 20 dimensions [13]. In this
paper, we test the performance of Sep-G-CMA-ES on large
scale optimization problems. We extracted and tuned seven
parameters of Sep-G-CMA-ES using an automatic algorithm
configuration procedure, called Iterated F-Race [2], on train-
ing functions with different features. In the first stage of the
experiment, the best performance of the tuned version of
Sep-G-CMA-ES was obtained using mixed dimensional1 in-
stances, when we consider tuning Sep-G-CMA-ES on 5, 10,
20, 40 and mixed dimensional training instances. The sec-
ond stage of the experiment on SOCO functions shows that
default Sep-G-CMA-ES outperforms G-CMA-ES. Moreover,
the tuned version of Sep-G-CMA-ES significantly improves
over both G-CMA-ES and default Sep-G-CMA-ES.

The contributions of this paper are two. First, tuning
across mixed dimensional instances is shown to be an ef-
fective parameter tuning strategy that improves the perfor-
mance of Sep-G-CMA-ES on scalable continuous optimiza-
tion functions. Second, we fill the gap left in SOCO by
providing results of the tuned version of Sep-G-CMA-ES on
the 19 SOCO functions.

2. THE SEP-G-CMA-ES ALGORITHM
Hansen et al. [5, 8, 14] have presented several ways to re-

duce the time complexity of CMA-ES. Sep-G-CMA-ES [14]
is one of these proposals. In contrast to G-CMA-ES, the co-
variance matrix of Sep-G-CMA-ES is diagonal, thus the de-
grees of freedom in the covariance matrix are reduced from
n(n+1)

2
to n, where n is the dimensionality of the search

space. With such modification, the learning rate for co-
variance matrix can be increased. Its increased factor of
covariance matrix learning rate is n+1.5

3
[13]. Sep-G-CMA-

ES is not rotational invariant. Details of Sep-G-CMA-ES

1The mixed dimensions adopted in training instances are a
random combination of 5, 10, 20 and 40 dimensions
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Table 1: The parameters and the factors to be tuned
Parameters Formulas Factor Range Default
Pop size (λ) 4 + ba ln(n)c a [1,10] 3

Parent size (µ) bλ/bc b [1,5] 2

Init step size (σ(0)) c(B −A) c (0,1) 0.5
IPop factor(d) d d [1,4] 2

stopTolFun 10e e [-20,-6] -15
stopTolFunHist 10f f [-20,-6] -20

stopTolX 10g g [-20,-6] -15

can be found in [14]. Instead of a partly time and space
linear Sep-G-CMA-ES in [13], a full time and space linear
Sep-G-CMA-ES is adopted in our present study. In our de-
fault setting of Sep-G-CMA-ES, the initial population size
is λ = 4 + b3 ln(n)c. The number of selected search points
in the population is µ = b0.5λc. The initial step-size is

σ(0) = 0.5(B − A), where [A,B]n is the initial search in-
terval. The increasing factor of population multiplication of
each restart is 2. Restarts occur if the stopping criterion is
met. Please consult [1] for the definition of the three stop-
ping criteria stopTolFunHist, stopTolFun and stopTolX.
We defined seven factors to be tuned. Each of these seven
factors is used in a formula to actually compute the value of
a parameter used by CMA-ES. The parameters, factors and
function formulas are presented in Table 1.

3. EXPERIMENTAL STUDY
We used the 19 SOCO benchmark functions suite (func-

tions labeled as fsoco∗) over 50, 100, 200, 500, 1000 dimen-
sions for our experiments. The detailed description of SOCO
functions is available in [7]. We used the same termination
conditions defined for SOCO. We report error values defined
as f(x)−f(x∗), where x is a candidate solution and x∗ is the
optimal solution. Error values lower than 10−14 are clamped
to 10−14. Our analysis is based on average errors.

3.1 Parameter tuning
Iterated F-race [2, 10] is used to automatically tune pa-

rameters in our study. In the automatic parameter tuning
process, SOCO functions with different features were ran-
domly sampled as training instances [9, 12]. The maximum
experimental budget is set to 5000 runs of Sep-G-CMA-ES.
The number of function evaluations of each run is equal to
5000 × n, where n is the problem’s dimension. We used the
default setting for Iterated F-race [2]. In the first stage of
the experiment, all the parameter configurations tuned on
5, 10, 20, 40 and mixed dimensional training instances are
used to compare their impact on the performance of Sep-
G-CMA-ES on large scale functions. In the second stage
of the experiment, the parameters tuned on mixed dimen-
sional training instances are used. The tuned parameters
are presented in Table 2.

3.2 Experimental results and comparison
The average errors obtained on each of the 19 SOCO

benchmark functions of each dimensionality was used to
evaluate the five different set of training instances. The
statistical analysis using one sided Wilcoxon matched-pairs
signed-rank test shows that mixed dimensional instance tun-
ing strategy significantly outperforms tuning on fixed dimen-
sional problems in the 13 of the total 20 cases at 0.05 α-level
and in 17 of total 20 cases at 0.1 α-level. In the second

Table 2: The results of the factors tuned on dif-
ferent dimensional and mixed dimensional training
instances
Extracted Tune Tune Tune Tune Tune

factor (D = 5)(D = 10)(D = 20)(D = 40)(D = Mixed)
a 6.525 9.254 9.065 9.188 9.426
b 2.405 3.548 3.132 3.182 1.995
c 0.7693 0.2803 0.937 0.8273 0.4216
d 1.579 3.282 3.503 2.721 3.415
e -13.92 -14.64 -17.03 -15.59 -16.84
f -13.13 -19.54 -17.75 -16.75 -15.10
g -14.08 -18.91 -18.5 -18.72 -16.21

stage of the experiment, our comparative study also shows
that tuning across mixed dimensional training instances is
an effective way to do parameter configuration for large scale
optimization problems.

Figure 1 and 2 show correlation plots that illustrate the
relative performance for all pairs of G-CMA-ES, default Sep-
G-CMA-ES and the tuned version of Sep-G-CMA-ES on di-
mensions 50, 100, 200, 500 and 1000, respectively. As seen
from their statistical comparison, the results indicate that
default Sep-G-CMA-ES outperforms G-CMA-ES. Moreover,
the tuned version of Sep-G-CMA-ES significantly improves
over both G-CMA-ES and default Sep-G-CMA-ES.

Next, we compared both the default and the tuned ver-
sion of Sep-G-CMA-ES with the 16 algorithms featured in
SOCO.2 The box-plots of Figure 3 for 500 and 1000 di-
mensional functions show that the performance of Sep-G-
CMA-ES is not very good. The box-plots of the com-
parison on other smaller dimensions are available in http:

//iridia.ulb.ac.be/supp/IridiaSupp2011-012/.
For further proving the effectiveness of the mixed dimen-

sional tuning strategy and clarifying the issue of the inferior
performance of Sep-G-CMA-ES, we tuned the parameters of
Sep-G-CMA-ES on 200 dimensional SOCO functions several
times and tested this “over-tuned” Sep-G-CMA-ESs on the
same functions. We found the “over-tuned” performance on
200 dimensions were similar to the performance of the mixed
small dimensional tuning strategy. On the one hand, the
similar performance indicates that mixed small dimensional
tuning strategy can effectively be used to tune parameters
for large scale optimization problems with a smaller compu-
tational budget than directly tuning on high dimensionality.
On the other hand, we can conclude that Sep-G-CMA-ES is
not competitive for large scale benchmark functions is due
to the optimization mechanism itself, rather than due to pa-
rameter configuration problem, since overtuning even can
not make its performance competitive.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we evaluate the impact that five different

tuning strategies have on the performance of Sep-G-CMA-
ES on large scale continuous benchmark problems. Con-
sidering different compositions of the training sets for tun-
ing, the best performance of the tuned version of Sep-G-
CMA-ES was obtained using mixed dimensional problems.
Based on tuning across mixed dimensional instances, we
benchmarked the tuned version of Sep-G-CMA-ES on SOCO

2For information about these 16 algorithms please go to
http://sci2s.ugr.es/eamhco/CFP.php
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Figure 1: Correlation plots for all pairs of G-CMA-ES, default Sep-G-CMA-ES and the tuned version of
Sep-G-CMA-ES on dimensions 50, 100, 200 and 500 respectively. Each point represents the average error
value obtained by either of the two algorithms compared. A point on the upper triangle delimited by the
diagonal indicates better performance for the algorithm on the x-axis; a point on the lower right triangle
indicates better performance for the algorithm on the y-axis. The number labeled beside some outstanding
point represent an index of corresponding function. The comparison is conducted based on average errors
value and the comparison results of the algorithm on the x-axis are presented in form of -win, -draw, -lose,
respectively. We marked with a + symbol those cases in which there is a statistically significant difference
at the 0.05 α-level between the algorithms. The number of opt on the axises shows the number of optima
obtained by the corresponding algorithm.

large scale functions and compensated for the unavailable
results of G-CMA-ES. A comparative study indicates that
default Sep-G-CMA-ES outperforms G-CMA-ES. Moreover,
the tuned version of Sep-G-CMA-ES significantly improves
over both G-CMA-ES and default Sep-G-CMA-ES. There-
fore, we conclude that tuning on mixed dimensional training
instances with different search landscapes is an effective way
to handle parameters configuration for large scale continu-
ous optimization problems. In our future work, the fixed vs.
mixed dimensional tuning strategy for large scale optimiza-
tion problems will be studied in more detail.
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Figure 3: Box-plots show the distribution of the average errors obtained on the 19 SOCO benchmark functions on
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