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ABSTRACT 
In this extended abstract, we look at the common practice of using 
optimization problem test suites to develop and/or evaluate 
optimization algorithms, and bring to bear on this practice a 
number of results available from computational learning theory. 
This enables optimization algorithm developers to express 
principled quantitative bounds on the likely performance of their 
algorithms on unseen problem instances, on the basis of details of 
their experimental design and empirical results on training or test 
instances. We first recap some relevant results from 
computational learning theory, and then describe how 
optimization development practice can be suitably recast in a way 
that enables these results to be applied. We then briefly discuss 
some related implications. An updated version of this article and 
associated material, including statistical tables relating to 
generalization bounds, are provided at http://is.gd/evalopt. 

Categories and Subject Descriptors 
I.2.6 Learning; I.2.8 Problem Solving, Control Methods and 
Search 

General Terms 
Algorithms, Performance, Experimentation, Theory.   

Keywords 
Computational learning theory, Optimization 

1. INTRODUCTION 
When new optimization algorithms are proposed, either for 
'general' use or for a specific problem domain, it is rare that we 
are given guarantees or bounds concerning the performance of the 
new algorithms on unseen problems.  Normally, an expectation of 
good performance is left as an implicit inference, based on 
performance over a test suite of problem instances. In a handful of 
cases, researchers have used a test set too.  But we still release 
new optimisations with no principled expectation of their 
generalisation performance.  Meanwhile, computational learning 

theory provides a growing collection of approaches to estimating 
generalisation performance in a variety of machine learning 
settings. Prominent in this line of work, for example, is Valiant's 
'Probably Approximately Correct' (PAC) framework for 
estimating the generalisation performance of classifiers [4],  while 
the more recent PAC-Bayes framework [3] is able to reason about 
estimated performance in the distributions over classifiers. 
Although the early work in this area tended towards delivering 
loose bounds on generalisation performance, there is considerable 
progress in recent years that has led to the derivation of tight 
bounds in a number of contexts, with practical value. 

In this extended abstract, we introduce a way to map and adjust 
some basic frameworks from computational learning theory into a 
number of optimisation contexts. This leads to bounds on the 
performance of optimisation algorithms that depend on their 
derivation. This will provide, for example, ways to estimate the 
confidence we can have in whatever algorithm was found 'best' in 
a comparison study, as a function of various elements of the 
training regime applied. Results can be provided that are salient 
for various kinds of optimisation algorithm development study, 
ranging from the development of general optimisers (e.g. over 
standard test suites) or the development of an optimiser for a 
specific problem class (e.g. a space of vehicle routing problems 
associated with a particular delivery firm). 

In the remainder of this extended abstract, we first recap the basic 
relevant elements of computational learning theory in section 2, 
then discuss their interpretation and use in the optimizer 
development context in section 3, and end with a brief discussion 
in section 4. 

2. ELEMENTS FROM COMPUTATIONAL 
LEARNING THEORY 
Computational learning theory aims, among other things, to 
provide estimates of how well a learned model or classifier will 
generalise over instances that were not seen during the classifier's 
development (i.e. during the training phase). There are a variety 
of learning models that vary in their basic assumptions and their 
applicability. Notable examples include the 'uniform convergence' 
model [5] and Probably-Approximately-Correct (PAC) Learning 
[4]. An accessible tutorial that surveys and discusses the main 
results is provided by Langford [2].    

In the most straightforward results from computational learning 
theory, bounds on generalisation error are given as a function of 
the number of training examples, and the error on the test set. In 
the remainder of this section, we present some terminology and a 

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
otherwise not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. 

GECCO’11, July 12-16, 2011, Dublin, Ireland. 

Copyright 2011 ACM 978-1-4503-0690-4/11/07…$10.00. 

 

707



number of results that we later refer to. Our terminology follows 
the formalism in [2], which in turn provided a compromise 
between varied formalisms in different branches of computational 
learning theory. 

2.1 Terminology 
We assume that training data comes in the form of (x, y) pairs, 
where Xx  is an instance to be classified, and Yy is the 

correct classification label. D is an unknown distribution 
over YX  , from which a sequence S of (x, y) pairs is drawn 
independently to form the training set. We assume |S|=m - i.e. 
there are m examples in the training set. A classifier, c, is a 
function that maps a member of X  to a member of Y. Primarily, 
we will be concerned with estimating the generalisation error of a 
classifier. 

The 'True Error' of a classifier c will be denoted cD - this is the 
actual (but typically unknown) error of the classifier evaluated 
over the distribution D - in other words, this is the generalisation 
error that we usually aim to estimate. This is defined, again 
following [2] as: 
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That is, this is the probability that any example x drawn from D 
will be mislabelled by the classifier c. Again, this is unknown, but 
we do have available to us the empirical error, cS or training error, 
calculated by testing our classifier on the sequence of examples S. 
We can define this as: 
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Now we are able to discuss the main results of interest in this 
abstract. 

2.2 Bounds on Generalisation, Given 
Performance on a Test Set  
The first, and central, result we consider is one that assumes we 
have a classifier c, that has been chosen or learned via some 
preliminary work. We then evaluate the performance of this 
classifier over the sequence of examples S. Importantly, the 
preliminary work that led to the derivation of c must not have 
involved any of the examples in S.  In context, we will see later 
that this is relevant to several types of study commonly reported 
in the optimisation literature, in which a previously published 
algorithm is evaluated over a set of test problems.  

The central 'test set bound' is expressed in terms of the binomial 
distribution. Basically, given the assumed true error rate cD, the 
number of errors we observe over a test set can be assumed to be 
drawn from a binomial distribution based on a 'success rate' of cD. 
That is, we make much use of the quantity: 
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which gives the probability of up to k errors in a series of m trials, 
given that the probability of an error is cD. This helps us see how 
a given true error rate can impact on the error rates we see on a 
test set, however it is more convenient to be able to reason in the 

other direction -- i.e. to learn something about the likely true error 
rate given the test set performance. So, we define the Binomial 
Tail Inversion [2], as: 
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That is, the binomial tail inversion tells us, for a given number of 
errors k over a test set of size m, and for a given probability  δ, the 
highest true error rate that gives up to that many errors with 
probability at least δ.  

The test set upper bound itself can now be stated as follows: 
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In words, and valid for all distributions D, classifiers c, and for δ 
in (0, 1]: given that the classifier c has recorded an error of cS on 
the sequence S of examples drawn from D (none of which was 
used in the training and/or choice of the classifier), the expression 
gives us probabilistic bounds on the true error rate. For example, 
we may choose to set δ at 0.1, and therefore can derive exactly the 
value r such that 9.0)Pr(cD  r . 

A lower bound can be similarly derived, which is:  

  1}))),,(Binomial1(:{min(cPr D
DS~ m

pcmp S
p

 

                                                                                           (6)                          

Langford [2] shows how these can be approximated to the more 
tractable form: 
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Meanwhile, a handy approximation for the special case when cS is 
0 (i.e. we see zero error on the test set), gives us an upper bound 
for the true error in such a case, as follows: 
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3. Optimizer Development as Classification 
Consider a common scenario in the optimisation literature, 
whereby a proposed new optimisation algorithm is tested on a 
number of problems. Typically, we may test k optimization 
algorithms on a set of m test problems. k might be in the region of 
5, for example, comprising a new algorithm proposed by the 
authors, one or two variants thereof, and a handful of (ideally) 
'state of the art' rival algorithms. m may be around  20, comprising 
the functions from one or more standard test suites. Suppose 
further that the new algorithm A outperforms the remaining k−1 
algorithms on q of the m test problems. 
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Authors of such research papers tend to be at a loss for what can 
be claimed about algorithm A, other than the basic statement that 
A was found best of the comparative set on q of the m problems. 
There is a vague implication, to the extent that q is high and the 
comparative set is generally well-regarded, that this level of 
performance suggests strong relative performance for A on other 
problems.  

However, if we cast this scenario in terms of prediction theory, 
we can say much more than this. A way to cross the bridge 
between this scenario and computational learning theory is to 
posit an 'implicit classifier', C. This implicit classifier  is a 
function that maps a problem instance (from a distribution of 
optimization problems D) to a label T or F (i.e. True or False), 
where T indicates the prediction that algorithm A will outperform 
the remainder of the comparative set on this problem. We can also 
see C simply as the claim that we can label a new problem 
instance with T. The results described in section 2, and many 
similar, can be harnessed to quantitatively evaluate and bound 
that claim. 

For example, suppose m=20 and q =10. This is not an uncommon 
degree of outperformance of the comparative set in such papers, 
especially when the comparative set includes strongly performing 
rivals - the implicit claim towards generally good performance in 
such a paper is often supported by A's achievement of more 'wins' 
than the rival algorithms, despite perhaps not outperforming them 
on a majority of the test problems. In this situation, we have cS = 
0.5 - and the test set bounds, with δ set at 0.1, and using the more 
easily tractable approximation of equation (7), give us a "90% 
confidence interval" of [0.23, 0.77]. That is, given that A 
outperformed the comparative set on 10 of the 20 test problems, 
we can have 90% confidence that its rate of outperforming the 
comparative set on new problems from the same distribution will 
be between 23% and 77%. I.e. it is quite unlikely that it will be 
best on fewer than 1 problem in 4, and similarly unlikely to be 
best on more than 3 problems in 4. 

Besides providing quantitative bounds, we can also use equations 
(5) and (6) (or the approximations, (7) and (8)) to derive threshold 
performance values based on a given number of test problems.  
E.g., given m=20, the highest empirical error rate that yields a 
90% upper bound of 0.5 is 0.23.  So, when using a suite of 20 
problems, algorithm A needs to outperform its comparative set on 
16 of the 20 problems before we can have 90% confidence that it 
will be better on “unseen instances” at least a little more than half 
of the time. A collection of such threshold performance values is 
provided at http://is.gd/evalopt. 

3.1  Bounds Arising From Performance on a 
Training Set 
Our deliberations so far apply to the situation when we are 
evaluating an optimiser, in the context of a set of other optimisers, 
over a given suite of test problems S, and where there was no bias 
or prejudice in the choice or development of the optimiser itself 
arising from the use of S. There are certainly cases where the 
scenario clearly applies. For example, an algorithm may be 
developed and tuned by first using a common test suite of 
function optimisation problems, designed to be difficult, rather 
than to reflect any particular distribution of real-world instances. 
Then, in a later experiment, the algorithm is compared with some 

others over an entirely different suite – e.g. a collection of real-
world filter design problems. The scenario to which the discussion 
so far applies is that of evaluating the generalisation performance 
of our algorithms in the latter case.  

However, in the latter case, it is also common to then perform 
tuning experiments, or other experiments that effectively modify 
the optimiser to yield one that performs as well as possible over 
this second set of real-world cases. More generally, what can we 
say about the optimizer-development scenario in which algorithm 
A achieves error rate cS over problem set S, following 
modification and tuning that involved problem set S? I.e. this is 
the situation in which S is used to ‘train’ A – we can generally 
expect that cS will tend to be lower in this scenario (perhaps often 
zero), but our expectations for  cD  should be downgraded, to 
allow for overfitting on S. In general, the way to evaluate 
performance in such cases is to use an unseen test set, in which 
case the material discussed so far directly applies. However, this 
is often problematic in machine learning practice, where the set of 
available classified examples is already quite small, and splitting 
into training and test set excludes too much information from the 
training process, outweighing the benefits of a less biased 
estimate of performance. This is sometimes the case in optimizer 
development scenarios where, for example, runs on the available 
problem instances are highly time consuming. More often, the use 
of a test set is in fact quite feasible in optimiser development 
scenarios, but rarely done.  

In either case, we can make use of the Occam’s Razor bound [1], 
which is the same as equation [5] (we consider now only the 
upper bound on cD, which is more practically salient), except for 
the replacement of δ by δP(c), where P(c) is the prior probability 
of our classifier c, and the qualification over all c. 
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In typical machine learning contexts in which this result is used, 
we would normally set P(c) to 1/|H| where H is a set of classifiers 
somehow under consideration, all deemed equally probable 
before we have knowledge of the set S. For example, H may be 
the set of all decision trees of a given depth over a particular set 
of operators and leaves. Notice that this often leads to rather small 
values for P(c) and consequently a rather loose upper bound 
(easier to see via doing the same substitution in equation (7)).  

A way that we can use the Occam’s razor bound in the 
optimization algorithm evaluation context is as follows. Suppose 
we have trained/tuned algorithm A on our set S of m problems – 
the tuned A achieves error rate of cS on these problems, in the 
sense that, on a proportion Sc1  of these problems, A 

outperforms a comparative set of (including A) k algorithms. 
Now, recall our ‘implicit classifier’, which labels a problem 
instance with T or F in respect of the claim “A outperforms the 
comparative set on this instance”. We can consider this classifier 
to be a choice from the set of k similar classifiers, one for each 
algorithm in the comparative set. Its prior probability is therefore 
1/|H|. 
 
Given any set of comparative algorithms, the researcher is of 
course free to use equation 2.4.1 and, for example take |H|=2 and 
specialize the claim to the relative performance of algorithm A 
and just one from the comparative set (e.g. the state of the art 
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competitor). But in such cases, further claims involving either A 
or this single comparator cannot be made on the basis of the same 
set of experiments, without needing to apply a Bonferroni-style 
correction. 
 
In both the cases of test set and training set bounds, we may wish 
to make different kinds of claims. E.g. rather than claims in terms 
of the comparative set, we may wish to evaluate the degree to 
which algorithm A returns a result within 10% of a known 
optimum value, or achieves a certain fitness level within a given 
amount of time. In the test-set scenarios (where the test set of 
instances was not used at all in the development of the algorithm 
under study), the approach we have outlined is directly 
applicable. In the training scenario, applying these results in a 
principled way is less clear. However it is better in any case, and 
more often feasible in the optimization context, to evaluate the 
tuned or trained algorithms on an unseen test set, in which case 
the test set scenario applies without the necessity to have 
estimated priors over the implicit classifiers. 
 
To support providing quantified bounds on the generalization 
performance of optimization algorithms, we provide a collection 
of tables at  http://is.gd/evalopt, covering the test set and training 
set scenarios, providing bounds on performance that arise from 
each of several combinations of empirical error cS and number of 
problems m. 
 

4. Discussion 
Perhaps the most pressing point of discussion that we have not yet 
touched upon is the nature of the distribution of problems D. The 
generalization error bounds we present all need to be qualified 
with the statement that they apply over unseen problem instances 
that are drawn from the same distribution as the set S of m 
training or test instances. In some scenarios this is unproblematic 
– for example we may have a parameterized distribution of 
problems from a certain domain (NK problems, a space of 
quadratic assignment problems, a set of graphs to be treated as 
colouring problems, and so on). But in many scenarios, the test 
suite is a well known eclectic collection of problems, such as the 
CEC2005 functions. In such cases, it is entirely unclear what 
useful meaning the generalization statement has. However this 

observation cuts two ways – the computational learning theory 
context can be seen as emphasizing to us the impoverished nature 
of the common practice of reporting optimization algorithm 
performance on such a test suite. If such a test suite is useful at all 
(and they seem to be, since there is no doubt that there has been 
progress in optimizer development facilitated by their use), we 
can conclude that generalizing performance properties from 
empirical performance over the suite has some value, and in that 
context the results in this paper provide some quantitative bounds 
that can be used. However, clearer statements can be made on the 
basis of parameterized (or similar) distributions of problems, 
and/or on the basis of performance on an unseen problem set, and 
it is therefore strongly recommended that optimizer development 
practice adopts such approaches much more widely. Arguably, 
developing an optimizer for real-world problems by tuning on a 
standard contrived-problem test suite may be akin to developing a 
classifier for ovarian cancer by training it to classify species of 
iris. 

An updated version of this document, with associated tables, is 
under maintenance at http://is.gd/evalopt. 
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