
Evaluating Optimization Algorithms: Bounds on the
Performance of Optimizers on Unseen Problems

David Corne
School of MACS, Heriot-Watt University

Edinburgh EH14 4AS
United Kingdom

dwcorne@gmail.com

Alan Reynolds
School of MACS, Heriot-Watt University

Edinburgh EH14 4AS
United Kingdom

A.Reynolds@hw.ac.uk

ABSTRACT
In this extended abstract, we look at the common practice of using
optimization problem test suites to develop and/or evaluate
optimization algorithms, and bring to bear on this practice a
number of results available from computational learning theory.
This enables optimization algorithm developers to express
principled quantitative bounds on the likely performance of their
algorithms on unseen problem instances, on the basis of details of
their experimental design and empirical results on training or test
instances. We first recap some relevant results from
computational learning theory, and then describe how
optimization development practice can be suitably recast in a way
that enables these results to be applied. We then briefly discuss
some related implications. An updated version of this article and
associated material, including statistical tables relating to
generalization bounds, are provided at http://is.gd/evalopt.

Categories and Subject Descriptors
I.2.6 Learning; I.2.8 Problem Solving, Control Methods and
Search

General Terms
Algorithms, Performance, Experimentation, Theory.

Keywords
Computational learning theory, Optimization

1. INTRODUCTION
When new optimization algorithms are proposed, either for
'general' use or for a specific problem domain, it is rare that we
are given guarantees or bounds concerning the performance of the
new algorithms on unseen problems. Normally, an expectation of
good performance is left as an implicit inference, based on
performance over a test suite of problem instances. In a handful of
cases, researchers have used a test set too. But we still release
new optimisations with no principled expectation of their
generalisation performance. Meanwhile, computational learning

theory provides a growing collection of approaches to estimating
generalisation performance in a variety of machine learning
settings. Prominent in this line of work, for example, is Valiant's
'Probably Approximately Correct' (PAC) framework for
estimating the generalisation performance of classifiers [4], while
the more recent PAC-Bayes framework [3] is able to reason about
estimated performance in the distributions over classifiers.
Although the early work in this area tended towards delivering
loose bounds on generalisation performance, there is considerable
progress in recent years that has led to the derivation of tight
bounds in a number of contexts, with practical value.

In this extended abstract, we introduce a way to map and adjust
some basic frameworks from computational learning theory into a
number of optimisation contexts. This leads to bounds on the
performance of optimisation algorithms that depend on their
derivation. This will provide, for example, ways to estimate the
confidence we can have in whatever algorithm was found 'best' in
a comparison study, as a function of various elements of the
training regime applied. Results can be provided that are salient
for various kinds of optimisation algorithm development study,
ranging from the development of general optimisers (e.g. over
standard test suites) or the development of an optimiser for a
specific problem class (e.g. a space of vehicle routing problems
associated with a particular delivery firm).

In the remainder of this extended abstract, we first recap the basic
relevant elements of computational learning theory in section 2,
then discuss their interpretation and use in the optimizer
development context in section 3, and end with a brief discussion
in section 4.

2. ELEMENTS FROM COMPUTATIONAL
LEARNING THEORY
Computational learning theory aims, among other things, to
provide estimates of how well a learned model or classifier will
generalise over instances that were not seen during the classifier's
development (i.e. during the training phase). There are a variety
of learning models that vary in their basic assumptions and their
applicability. Notable examples include the 'uniform convergence'
model [5] and Probably-Approximately-Correct (PAC) Learning
[4]. An accessible tutorial that surveys and discusses the main
results is provided by Langford [2].

In the most straightforward results from computational learning
theory, bounds on generalisation error are given as a function of
the number of training examples, and the error on the test set. In
the remainder of this section, we present some terminology and a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
otherwise not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

GECCO’11, July 12-16, 2011, Dublin, Ireland.

Copyright 2011 ACM 978-1-4503-0690-4/11/07…$10.00.

707

number of results that we later refer to. Our terminology follows
the formalism in [2], which in turn provided a compromise
between varied formalisms in different branches of computational
learning theory.

2.1 Terminology
We assume that training data comes in the form of (x, y) pairs,
where Xx is an instance to be classified, and Yy is the

correct classification label. D is an unknown distribution
over YX  , from which a sequence S of (x, y) pairs is drawn
independently to form the training set. We assume |S|=m - i.e.
there are m examples in the training set. A classifier, c, is a
function that maps a member of X to a member of Y. Primarily,
we will be concerned with estimating the generalisation error of a
classifier.

The 'True Error' of a classifier c will be denoted cD - this is the
actual (but typically unknown) error of the classifier evaluated
over the distribution D - in other words, this is the generalisation
error that we usually aim to estimate. This is defined, again
following [2] as:

))((Pr
~),(

yxcc
Dyx

D  (1)

That is, this is the probability that any example x drawn from D
will be mislabelled by the classifier c. Again, this is unknown, but
we do have available to us the empirical error, cS or training error,
calculated by testing our classifier on the sequence of examples S.
We can define this as:

yxc
m

c
Syx

S  
),(

)(
1

 (2)

Now we are able to discuss the main results of interest in this
abstract.

2.2 Bounds on Generalisation, Given
Performance on a Test Set
The first, and central, result we consider is one that assumes we
have a classifier c, that has been chosen or learned via some
preliminary work. We then evaluate the performance of this
classifier over the sequence of examples S. Importantly, the
preliminary work that led to the derivation of c must not have
involved any of the examples in S. In context, we will see later
that this is relevant to several types of study commonly reported
in the optimisation literature, in which a previously published
algorithm is evaluated over a set of test problems.

The central 'test set bound' is expressed in terms of the binomial
distribution. Basically, given the assumed true error rate cD, the
number of errors we observe over a test set can be assumed to be
drawn from a binomial distribution based on a 'success rate' of cD.
That is, we make much use of the quantity:














k

i

im
D

i
DD cc

i

m
ckm

0

)1(),,(Binomial (3)

which gives the probability of up to k errors in a series of m trials,
given that the probability of an error is cD. This helps us see how
a given true error rate can impact on the error rates we see on a
test set, however it is more convenient to be able to reason in the

other direction -- i.e. to learn something about the likely true error
rate given the test set performance. So, we define the Binomial
Tail Inversion [2], as:

}),,(Binomial:{max),,(Btinv   pkmpkm
p

 (4)

That is, the binomial tail inversion tells us, for a given number of
errors k over a test set of size m, and for a given probability δ, the
highest true error rate that gives up to that many errors with
probability at least δ.

The test set upper bound itself can now be stated as follows:

  1)),,(Btinv(cPr D
DS~ m Scm (5)

In words, and valid for all distributions D, classifiers c, and for δ
in (0, 1]: given that the classifier c has recorded an error of cS on
the sequence S of examples drawn from D (none of which was
used in the training and/or choice of the classifier), the expression
gives us probabilistic bounds on the true error rate. For example,
we may choose to set δ at 0.1, and therefore can derive exactly the
value r such that 9.0)Pr(cD  r .

A lower bound can be similarly derived, which is:

  1}))),,(Binomial1(:{min(cPr D
DS~ m

pcmp S
p

 (6)

Langford [2] shows how these can be approximated to the more
tractable form:

 


















 1
2

2
ln

Pr
mDS~ mm

c
c S

D (7)

Meanwhile, a handy approximation for the special case when cS is
0 (i.e. we see zero error on the test set), gives us an upper bound
for the true error in such a case, as follows:

 


















 1

1
ln

0Pr
mDS~ m

cc DS (8)

 .

3. Optimizer Development as Classification
Consider a common scenario in the optimisation literature,
whereby a proposed new optimisation algorithm is tested on a
number of problems. Typically, we may test k optimization
algorithms on a set of m test problems. k might be in the region of
5, for example, comprising a new algorithm proposed by the
authors, one or two variants thereof, and a handful of (ideally)
'state of the art' rival algorithms. m may be around 20, comprising
the functions from one or more standard test suites. Suppose
further that the new algorithm A outperforms the remaining k−1
algorithms on q of the m test problems.

708

Authors of such research papers tend to be at a loss for what can
be claimed about algorithm A, other than the basic statement that
A was found best of the comparative set on q of the m problems.
There is a vague implication, to the extent that q is high and the
comparative set is generally well-regarded, that this level of
performance suggests strong relative performance for A on other
problems.

However, if we cast this scenario in terms of prediction theory,
we can say much more than this. A way to cross the bridge
between this scenario and computational learning theory is to
posit an 'implicit classifier', C. This implicit classifier is a
function that maps a problem instance (from a distribution of
optimization problems D) to a label T or F (i.e. True or False),
where T indicates the prediction that algorithm A will outperform
the remainder of the comparative set on this problem. We can also
see C simply as the claim that we can label a new problem
instance with T. The results described in section 2, and many
similar, can be harnessed to quantitatively evaluate and bound
that claim.

For example, suppose m=20 and q =10. This is not an uncommon
degree of outperformance of the comparative set in such papers,
especially when the comparative set includes strongly performing
rivals - the implicit claim towards generally good performance in
such a paper is often supported by A's achievement of more 'wins'
than the rival algorithms, despite perhaps not outperforming them
on a majority of the test problems. In this situation, we have cS =
0.5 - and the test set bounds, with δ set at 0.1, and using the more
easily tractable approximation of equation (7), give us a "90%
confidence interval" of [0.23, 0.77]. That is, given that A
outperformed the comparative set on 10 of the 20 test problems,
we can have 90% confidence that its rate of outperforming the
comparative set on new problems from the same distribution will
be between 23% and 77%. I.e. it is quite unlikely that it will be
best on fewer than 1 problem in 4, and similarly unlikely to be
best on more than 3 problems in 4.

Besides providing quantitative bounds, we can also use equations
(5) and (6) (or the approximations, (7) and (8)) to derive threshold
performance values based on a given number of test problems.
E.g., given m=20, the highest empirical error rate that yields a
90% upper bound of 0.5 is 0.23. So, when using a suite of 20
problems, algorithm A needs to outperform its comparative set on
16 of the 20 problems before we can have 90% confidence that it
will be better on “unseen instances” at least a little more than half
of the time. A collection of such threshold performance values is
provided at http://is.gd/evalopt.

3.1 Bounds Arising From Performance on a
Training Set
Our deliberations so far apply to the situation when we are
evaluating an optimiser, in the context of a set of other optimisers,
over a given suite of test problems S, and where there was no bias
or prejudice in the choice or development of the optimiser itself
arising from the use of S. There are certainly cases where the
scenario clearly applies. For example, an algorithm may be
developed and tuned by first using a common test suite of
function optimisation problems, designed to be difficult, rather
than to reflect any particular distribution of real-world instances.
Then, in a later experiment, the algorithm is compared with some

others over an entirely different suite – e.g. a collection of real-
world filter design problems. The scenario to which the discussion
so far applies is that of evaluating the generalisation performance
of our algorithms in the latter case.

However, in the latter case, it is also common to then perform
tuning experiments, or other experiments that effectively modify
the optimiser to yield one that performs as well as possible over
this second set of real-world cases. More generally, what can we
say about the optimizer-development scenario in which algorithm
A achieves error rate cS over problem set S, following
modification and tuning that involved problem set S? I.e. this is
the situation in which S is used to ‘train’ A – we can generally
expect that cS will tend to be lower in this scenario (perhaps often
zero), but our expectations for cD should be downgraded, to
allow for overfitting on S. In general, the way to evaluate
performance in such cases is to use an unseen test set, in which
case the material discussed so far directly applies. However, this
is often problematic in machine learning practice, where the set of
available classified examples is already quite small, and splitting
into training and test set excludes too much information from the
training process, outweighing the benefits of a less biased
estimate of performance. This is sometimes the case in optimizer
development scenarios where, for example, runs on the available
problem instances are highly time consuming. More often, the use
of a test set is in fact quite feasible in optimiser development
scenarios, but rarely done.

In either case, we can make use of the Occam’s Razor bound [1],
which is the same as equation [5] (we consider now only the
upper bound on cD, which is more practically salient), except for
the replacement of δ by δP(c), where P(c) is the prior probability
of our classifier c, and the qualification over all c.

  1)))(,,(Btinv (Pr
mDS~

cPcmcc: SD (9)

In typical machine learning contexts in which this result is used,
we would normally set P(c) to 1/|H| where H is a set of classifiers
somehow under consideration, all deemed equally probable
before we have knowledge of the set S. For example, H may be
the set of all decision trees of a given depth over a particular set
of operators and leaves. Notice that this often leads to rather small
values for P(c) and consequently a rather loose upper bound
(easier to see via doing the same substitution in equation (7)).

A way that we can use the Occam’s razor bound in the
optimization algorithm evaluation context is as follows. Suppose
we have trained/tuned algorithm A on our set S of m problems –
the tuned A achieves error rate of cS on these problems, in the
sense that, on a proportion Sc1 of these problems, A

outperforms a comparative set of (including A) k algorithms.
Now, recall our ‘implicit classifier’, which labels a problem
instance with T or F in respect of the claim “A outperforms the
comparative set on this instance”. We can consider this classifier
to be a choice from the set of k similar classifiers, one for each
algorithm in the comparative set. Its prior probability is therefore
1/|H|.

Given any set of comparative algorithms, the researcher is of
course free to use equation 2.4.1 and, for example take |H|=2 and
specialize the claim to the relative performance of algorithm A
and just one from the comparative set (e.g. the state of the art

709

competitor). But in such cases, further claims involving either A
or this single comparator cannot be made on the basis of the same
set of experiments, without needing to apply a Bonferroni-style
correction.

In both the cases of test set and training set bounds, we may wish
to make different kinds of claims. E.g. rather than claims in terms
of the comparative set, we may wish to evaluate the degree to
which algorithm A returns a result within 10% of a known
optimum value, or achieves a certain fitness level within a given
amount of time. In the test-set scenarios (where the test set of
instances was not used at all in the development of the algorithm
under study), the approach we have outlined is directly
applicable. In the training scenario, applying these results in a
principled way is less clear. However it is better in any case, and
more often feasible in the optimization context, to evaluate the
tuned or trained algorithms on an unseen test set, in which case
the test set scenario applies without the necessity to have
estimated priors over the implicit classifiers.

To support providing quantified bounds on the generalization
performance of optimization algorithms, we provide a collection
of tables at http://is.gd/evalopt, covering the test set and training
set scenarios, providing bounds on performance that arise from
each of several combinations of empirical error cS and number of
problems m.

4. Discussion
Perhaps the most pressing point of discussion that we have not yet
touched upon is the nature of the distribution of problems D. The
generalization error bounds we present all need to be qualified
with the statement that they apply over unseen problem instances
that are drawn from the same distribution as the set S of m
training or test instances. In some scenarios this is unproblematic
– for example we may have a parameterized distribution of
problems from a certain domain (NK problems, a space of
quadratic assignment problems, a set of graphs to be treated as
colouring problems, and so on). But in many scenarios, the test
suite is a well known eclectic collection of problems, such as the
CEC2005 functions. In such cases, it is entirely unclear what
useful meaning the generalization statement has. However this

observation cuts two ways – the computational learning theory
context can be seen as emphasizing to us the impoverished nature
of the common practice of reporting optimization algorithm
performance on such a test suite. If such a test suite is useful at all
(and they seem to be, since there is no doubt that there has been
progress in optimizer development facilitated by their use), we
can conclude that generalizing performance properties from
empirical performance over the suite has some value, and in that
context the results in this paper provide some quantitative bounds
that can be used. However, clearer statements can be made on the
basis of parameterized (or similar) distributions of problems,
and/or on the basis of performance on an unseen problem set, and
it is therefore strongly recommended that optimizer development
practice adopts such approaches much more widely. Arguably,
developing an optimizer for real-world problems by tuning on a
standard contrived-problem test suite may be akin to developing a
classifier for ovarian cancer by training it to classify species of
iris.

An updated version of this document, with associated tables, is
under maintenance at http://is.gd/evalopt.

5. REFERENCES
[1] Blumer, A., Ehrenfeucht, A, Haussler, D., Warmuth, M.

(1987) Occam’s Razor, Information Processing Letters,
24:377—380.

[2] Langford, J. (2005) Tutorial on Practical Prediction Theory
for Classification, Journal of Machine Learning Research 6
(2005) 273–306.

[3] McAllester, D. (1999) PAC-Bayesian Model Averaging, in
Proc. Annual Conf. on Computational Learning Theory
(COLT), pp. 164—170.

[4] Valiant, L.G. (1984) A theory of the learnable.
Communications of the ACM, 27(11):1134–1142.

[5] Vapnik, V. N., Chervonenkis, Y. (1971) On the uniform
convergence of relative frequencies of events to their
probabilities. Theory of Probability and its Applications,
16(2):264–280.

710

