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ABSTRACT 
Introducing efficient Bayesian learning algorithms in Bayesian 
network based EDAs seems necessary in order to use them for 
large and complex problems. In this paper we propose an 
algorithm, called CMSS-BOA, which uses a recently introduced 
heuristic called max-min parent children (MMPC) [3] in order to 
constraint the models search space. This algorithm does not 
consider a fix and small upper bound on the order of interaction 
between variables and is able solve problems with large number 
of variables efficiently. We compare the efficiency of CMSS-
BOA with standard Bayesian network based EDA for solving 
several benchmark problems.  

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial 
Intelligence]: Problem Solving, Control Methods, and Search 

General Terms 
algorithms, performance, Experimentation  

Keywords 
Bayesian optimization algorithm, estimation of distribution 
algorithms, probabilistic models,  optimization. 

1. INTRODUCTION 
Using BOA for large optimization problem is not possible without 
using more efficient structure learning algorithms. In recent years 
several algorithms have been proposed which make learning 
Bayesian network from high dimensional data sets in a reasonable 
time feasible. In this paper we use one of the most efficient 
algorithm which has been introduced in [3]. This algorithm is a 
hybrid algorithm and use a heuristic called max-min parent 
children (MMPC) for finding the candidate parent set for each 
variable and then used a hill climbing approach on this 
constrained search space. We use this Heuristic for model learning 
in BOA and call it Constrained Model Search Space BOA(CMSS-
BOA). Several experiments on different types of benchmark 
problems are carried out in order to study how the model building 
time and also population of promising solutions change through 
the optimization process using CMSS-BOA and standard BOA. 

2. BOA and  CMSS-BOA 
 The Bayesian optimization algorithm (BOA)[1,2] generates 

a population of candidate solutions by building and sampling 
Bayesian networks. Therefore the order of statistics in the 

factorization of joint probability distribution of the candidate 
solution is not restricted. After the random initialization of the 
population with a uniform distribution over all possible solutions, 
the population is then updated for a number of generations.  

MMPC algorithm, uses a constrained based method to 
discover possible parents-children relationships in a Bayesian 
network. Then a search method such as greedy search can be used  
to find the network which maximize a selected score.  

The MMPC algorithm uses a data structure called parent- children 
set, for each variable Xi that contains all variables that are a parent 
or a child of Xi in any Bayesian network faithfully representing the 
distribution of the set of examples.. MMPC uses G2 statistical test 
on the set of examples to determine the conditional independency 
between pairs of variables given a set of other variables. The 
MMPC algorithm consists of two phases. In the first phase, an 
empty set of candidate parents-children (CPC) is associated with Xi. 
Then it tries to add more nodes one by one to this set using MMPC 
heuristic. This heuristic selects the variable Xj that maximizes the 
minimum association with Xi relative to current CPC and add this 
variable to it. The minimum  Association of Xj and Xi relative a set 
of variables CPC  is  defined as below: 

)|;(minarg)|;( CPCXXAssocCPCXXMinAssoc jiji   

for all subset S of CPC. 

)|;( SXXAssoc ji
is an estimate of the strength of the 

association between Xi and Xj knowing the CPC and is equal to 
zero if Xi and Xj are conditionally independent given the CPC. 
The function Assoc  uses the p-value returned by the G2 test of 
independence as a measure of association: The smaller the p-value 
the higher the association. The first phase  of MMPC  stops when 
all remaining variables are considered independent of Xi given the 
subset of CPC .  

Algorithm 1: CMSS-BOA  ALgorithm 

1.  Generate a random initial set of  solution S 

2. Calculate the fitness of individuals in S 

3. Select a subset of promising solution in S 

4. Find  the CPC of each variable  

5. Use a greedy search to find Bayesian network B in 
constrained space by CPCs witch maximize a score 

6. Generate new set of solutions by sampling the Bayesian 
network B and replace S with this set. 

7. If the termination criteria are not meet go to step 2 
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Figure 1  Performance comparison on CMSS –BOA and  
standard EDA for OneMax combined with 6 3-traps. Total 
program size is 200 and population size is 1000 

 

 

After determining the candidate parent set of each variable 
then a greedy hill-climbing search is performed in the space of 
Bayesian networks. The important difference from standard hill 
climbing Bayesian network structure learning is that the search is 
constrained to only consider adding an edge if it was discovered 
by MMPC in the first phase. Algorithm 1 summarizes the steps of  
CMSS-BOA. 

We use the MMPC implementation in [3] for finding the 
candidate parent-children set used in CMSS-BOA. 

3. Experimental results 
To compare the performance and behaviour of CMSS-BOA  and 
BOA, the experiments on different benchmark functions are 
performed. In order to make problems with non-uniform 
sparseness we combine k-trap and one-max. In Figure 1 we 
present the results of the algorithm for a 200 bit problem which is 
a combination of 3-trap and one-max. The population size is 1000 
and is chosen from several experiments with different population 
sizes. We try several  population sizes and increased it gradually 
until obtaining  the optimum or close to optimum result in most 
runs. We present the results of the two algorithms in Figure 1. On 
average, the best solution of CMSS-BOA has a slightly higher 
fitness value. The best solution in generation 150 has a fitness 
value  199 for CSMM-BOA comparing to 192 of standard BOA. 
Figure 1 (a)  presents the  average Model building times for 
each generation. As we can see BOA  needs significantly 
more time for model building and through generations the 
model building time increases faster than the one of  
CMSS-BOA which makes the difference between  total 
learning time even more. Figure 2 (c) shows the cumulative 
learning time in each generation. This result shows a strong 
improvement in efficiency as the total learning time for 
CMSS-BOA almost 10 time less than for standard  BOA. 
Fiure1 (b) shows how the average fitness of the population 
changes through different generations. In this experiment 
CMSS-BOA has slightly higher results than BOA. Finally, 
Figure 2 (d) presents how the average fitness of the 
population changes through time.  

4. Conclusion 
In this paper we  have proposed an Bayesian network based EDA  
using a recently introduced Bayesian structure learning algorithm.  

In this Algorithm The models search space constrains by  
candidate parent children set without considering uniform 
sparseness. Therefore It is very useful for solving large and 
complex problems when searching non homogenous search space 
is required. Our results show that this algorithm. is able to 
obtained comparable results (and some time better results)  with 
the algorithms which use the non constrained search space  
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