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ABSTRACT
The herein paper addresses the issue of providing a model
and guidelines for constructing a sustainable ICT environ-
ment at the University of Luxembourg. A particular context
is thus considered, based on a real-life project that has as
aim to provide a sustainable environment for the ICT in-
frastructure of the university. According to the different en-
vironment constraints and requirements, the objectives are
to minimize electricity consumption by employing virtual-
ization techniques and also to reduce carbon emissions by
creating a load balanced charge of the computers that build
the infrastructure. The quality of service is also addressed by
provisioning factors. A multi-objective dynamic approach is
considered in order to cope with the simultaneous optimiza-
tion of the mentioned objectives and the dynamic nature of
the system.

Categories and Subject Descriptors
I.2 [Artificial intelligence]: Miscellaneous; J.0 [Computer
applications]: General

General Terms
Design, Experimentation

Keywords
load balancing, sustainable ICT

1. INTRODUCTION
The main purpose of the project that encloses the results

of this paper is to reduce the carbon emissions that result out
of the University of Luxembourg’s ICT operations. In this
sense one of the goals is to implement measures that reduce
the electricity consumption needed for the well-functioning
of the university’s ICT facilities. To this end, a viable solu-
tion for reducing energy consumption can be implemented
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by using virtual machines. This solution allows grouping
multiple virtual machines on a reduced number of resources
thus leading to a more efficient exploitation of the available
computational power. In addition, low energy consumption
terminals can be used to access the virtual machines, dis-
patching the computational load over a cloud of more pow-
erful physical resources. At the same time, sharing access
across services or end-users via virtual machines can reduce
the number of active physical machines hence providing a
straightforward approach for reducing energy consumption
and carbon emissions.

The experience of more than 900 universities using virtual-
ization solutions [1] proved that important cuts in electricity
expenses can be attained. Statistics for regular usage with
alternating peaks and no-activity periods place computa-
tional requirements at an average of less than 40% of the to-
tal available computational power. Administrative and user
groups can be defined for most ICT environments delimit-
ing the requirements of a research department, for example,
from the ones of students or personnel. End-users like the
students at the university or the administrative staff can
thus share via multiple virtual machines the same resource
directly reducing the number of running machines.

The aim of this work is to provide a model and guide-
lines for the assignment of virtual machines over a cloud of
real machines. An important characteristic of cloud com-
puting is related to the three architectural layers involved in
the management of cloud computing environments [8], each
of them serving a different purpose and handling different
products: (1) Infrastructure as a service (IaaS), (2) Plat-
form as a Service (PaaS), and (3) Software as a Service
(SaaS). The perspective we address in this work regards
the Platform as a Service layer, the final goal being to ma-
nipulate the virtual machines (seen as platforms that run an
operating system).

At an optimization level, the main challenges raised by vir-
tualization come from the need of ensuring a load balancing
over the cloud of resources in order to have an efficient en-
ergy consumption model. In order to fulfill the sustainable
ICT desiderata, the alocation of virtual machines to main-
frame computers aims at ensuring a dynamic provisioning
as to minimize energy consumption. Also, with the admin-
istration and energy costs of the server rooms surpassing the
hardware costs and given the rising cost of electricity, green
computing and load balancing become even more important.

The problem we are facing can be modeled as a dynamic
preemptive load balancing with stochastic execution
times in heterogeneous environments. The difficulty of
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the problem is not only given by the dynamic character fo
the problem, but also by the fact that several objectives need
to be optimized simultaneously in the presence of several
stochastic factors.

We therefore propose a solution for the efficient distri-
bution of virtual machines across a cloud of computational
resources as to minimize the energy consumption. In the
effort of creating a sustainable environment, besides the in-
tegration of renewable energy resources, the University of
Luxembourg is also planning the reduction of electricity con-
sumption for the future Belval campus which will gather all
current facilities and research laboratories.

1.1 Background Notions and Notation
Let F be an objective function, defined over X (decision

space) and taking values in Y (objective space), F : X → Y,
one may consider the minx∈X F (x) minimization problem.

For the multi-objective case, F is defined as a vector of ob-
jective functions F : X → Rk, F (x) = [f1(x), . . . , fk(x)].
The set X ⊂ Rn of all the feasible solutions defines the
decision space, while the vector F maps feasible solutions
into the objective space. In addition, the Pareto optimality
concept is used, based on partial order relations defined as
follows:

Definition 1. Let v, w ∈ Rk. We say that the vector v
is less than w (v <p w), if vi < wi for all i ∈ {1, . . . , k}.
The ≤p relation is defined analogously.

Definition 2 (dominance). A point y ∈ X is dom-
inated by x ∈ X (x ≺ y) if F (x) ≤p F (y) and if ∃i ∈
{1, ..., k} such that fi(x) < fi(y). Otherwise y is called non-
dominated by x.

Definition 3. A point x ∈ X is called a Pareto point if
there is no y ∈ X which dominates x. The set of all Pareto
solutions forms the Pareto set.

Furthermore, in order to model the dynamic behavior of
the optimization problem, given t a monotonically increasing
value on a time period [t0, tend] ∈ R+ we have:∫ tend

t0

Fdt =

(∫ tend

t0

f1dt, . . . ,

∫ tend

t0

fkdt

)
(1)

The following notation will be alternatively used to de-
scribe dynamic formulations, for simplicity reasons:∫ tend

t0

Fdt =

(∫ tend

t0

fidt

)
1≤i≤k

(2)

2. THE MULTI-OBJECTIVE LOAD BALANC-
ING CONTEXT

2.1 Load balancing
The load balancing problem consists in mapping jobs,

e.g. virtual machines, to computational resources (real ma-
chines). The simplest way of handling this problem is by
using approaches like the sender-initiater, where the ma-
chine which is heavily loaded sends some of its charge to
another random machine. In turn the machine that receives

the request can accept or not the demand given that the ex-
tra charge may imply overshooting a certain critical charge
level.

Depending on the nature of the environment two types
of load balancing approaches can be identified: static and
dynamic. For the static case, once an assignment solution is
applied, no job can be changed, i.e. moved to a different ma-
chine that the already assigned one. For dynamic cases, we
distinguish two sub-classes: preemptive and non-preemptive
[5]. In the first case the jobs can change their assignment
at execution time, while in the non-preemptive case, once a
job is started on a machine that job must be completed on
the same machine. In this latter case, provisioning occurs,
meaning that new jobs can appear during the run and they
need to be added to the existing resources. Dynamic load
balancing can be treated using diffusion models [2] or flow
models [3].

Another important aspect for determining the type of
problem dealt with is related to the nature of the jobs that
need to be assigned (deterministic or stochastic). For virtual
machines, as the execution time depends on the end-user,
one can not know in advance the total required execution
time, where form the stochastic nature of the problem.

Load balancing formulations for cloud environments sup-
pose different perspectives according to the followed goal
and the available data. Classical formulations include the
following:

Scheduling problems , seen as job-shop scheduling, mul-
tiprocessor scheduling, grid task scheduling [9]. Asso-
ciated objectives: makespan minimization (when the
jobs are deterministic) generally using evolutionary al-
gorithms [6].

Flow problems (Multicast flows) Associated goals: flow-
time (minimization of the total completion time of
all tasks), minimization of the communication costs
needed in transfering the jobs between resources; min-
imization of the communication time, minimization of
the response time (the quantity of information to be
exchanged, communication costs and delays).

Also other goals co-exist as maximum or average link uti-
lization, flow assignation or packet loss.

In the current situation we adopt a load balancing per-
spective taking into account energy consumption derived by
considering base operations. The execution time of each vir-
tual machine is not known in advance so scheduling strate-
gies can not be employed. Also as we are not interested
in the communication related factors and therefore we did
not adhere to a flow formulation. The approach we are em-
ploying consists in dynamically balancing the load of each
machine. We therefore use a dynamic formulation given the
dynamic characteristics of each job (execution time, amount
of processor needed).

2.2 Dynamic multi-objective optimization for-
mulation

The dynamic multi-objective optimization field is a grow-
ing area acknowledging four main types of dynamism sources.
According to [7] the formulations can be classified in four
classes. The load balancing problem is a 4th order dynamic
problem, being defined as an online dynamic multi-objective

734



problem of the form:

H(Fσ, D, x, t) = FD(σ,t)(x, t)

For the general case and assuming a minimization context,
the goal is to identify a sequence of solutions x(t), with
t ∈ [0, tend] leading to the following:

min
x(t)

∫ tend

t0

FD(σ,t)(x(t), t) dt

min
x(t)

{(∫ tend

t0

fD(σ,t),i(x(t), t) dt

)
1≤i≤k

}
We used minimization in the formulation, as maximiza-

tion is treated similarly. The objective functions we will be
using are both minimization and maximization objectives.

3. PROBLEM FORMULATION
In the studied model a mixture of min and max functions

is used. The σ time dependent environment parameters are
given by the memory capacity of each virtual machine, the
memory capacity of the used machines and the processing
power needed by each virtual machine to be processed in
any of the real machines. The dynamicity is given by the
fact that the virtual machines being represented by users
change in time. Each virtual machine has a life time given
by the login moment (t0) and an ending moment given by the
moment when the user closes the session (tend). As the real
machines can be turned on and off the current environment
machines give the memory capacity, implying that the vector
of capacities changes also in time acording to the available
machines. Finally, the processing power needed by a user at
a given time moment strongly depends on the applications
running on the virtual machine, that dynamically change
with time.

• A set of physical computational resources or
machines described by power states
Mt = {m1,m2, . . . ,mη(t)}, with |Mt| = α(t) the to-
tal number of power states for all the machines. For
each machine we have {mi} = {m1

i ,m
2
i , . . . ,m

γ(i)},
|mi| = γ(i), number of power states for the machine
mi, 1 ≤ i ≤ η(t). The number of available resources
is assumed to dynamically change over time due to
sharing policies acting across administrative domains,
e.g. shared computers at institution level, stochastic
factors or scheduling constraints.

As an extension, let M̂t be a set of resources defined
as M̂t = Mt ∪ {q}, where q represents a queue. No
processing is done for the virtual machines assigned to
the queue.

• A time dependent set of virtual machines de-
fined as VM t = {vm1, vm2, . . . vmβ(t)}, |VMt| = β(t).
As for the physical machines, different scenarios can
be considered where the number of virtual machines
varies due to incoming or finishing services, service
level agreement terms or end of contractual duration.

Environment Parameters
The D(σ, t) in our case is defined over a set σ of parameters
described by ct(i), cvmt(j) and pt(i, j):

• A maximal capacity per machine, equal for all
the states of a machine, ct(i), 1 ≤ i ≤ α(t), subject
to stochastic changes over time in response to external
factors. A finite capacity is assumed per physical ma-
chine, e.g. memory or a different resource to balance
across machines. An infinite capacity is assumed for
the queue, used only to put virtual machines on hold.

• Energy consumption per power state, et(i), 1 ≤
i ≤ α(t), knowing that a higher computational power
leads to a higher energy consumption.

• Capacity required by a virtual machine vmj at
a given time moment t, denoted by cvmt(j), 1 ≤ j ≤
β(t). For the herein study, the capacity required by a
virtual machines, e.g. memory amount, is considered
to vary over time with respect to internal functioning
constraints.

• Computational load of the virtual machine vmj when
assigned to a physical machine for a power state mi,
here given by
pt(i, j) with 1 ≤ i ≤ α(t), 1 ≤ j ≤ β(t), seen in the fol-
lowing as the amount of processor power (percentage)
required by the virtual machine vmi on the physical
machine mj .

Variables
The problem consists in assigning the virtual machines to
real machines as to balance the memory and processor usage:

• X(t) = (xij(t))1≤i≤α(t)+1 a binary variable that, when

set to 1, designates the assignment of the jth virtual
machine to the ith state or queue (i equal to α(t) + 1);

• Y (t) = (yi(t))1≤i≤α(t), a binary variable denoting if

the ith state is active or not. If no states are active
for a given machine, the machine is considered to be
switched off. Please note that a machine can be in only
one state at a time.

Constraints
The assignment constraint

α(t)∑
i=1

β(t)∑
j=1

xijyi +

β(t)∑
j=1

xα(t)+1,j = β(t)

Also, for all the machines mk, k ∈ {1, . . . , η(t)} and the cor-
responding states yi ∈ mk the following constraints apply:

The capacity constraint yi

β(t)∑
j=1

xijcvmt(j) ≤ ct(i),

The processing constraint yi

β(t)∑
j=1

xijpt(i, j) ≤ 1,

The active machines constraint

α(t)∑
i=1

yi ≤ η(t),

∑
i∈mk

yi ≤ 1, 1 ≤ k ≤ η(t).
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Figure 1: Preliminary results depicting different approximate Pareto fronts (different objectives) obtained
with the Indicator Based Evolutionary Algorithm (IBEA) with 1000 generations per time step.

Objective functions
The chosen objective functions aim in the first place at mini-
mizing the electricity consumption (through one explicit ob-
jective and also by minimizing the number of used machines)
and at balancing the memory and computational power load.
The quality of service is also addressed through provisioning
by minimizing the number of virtual machines in the queue.
The multi-objective formulation is fully motivated by the
fact that the objectives are contradictory, e.g. by minimiz-
ing the number of active machines the workload per machine
increases, or different by nature (memory vs computational
load balancing).

Memory load balancing :

min

α(t)∑
k=1

ykξk

ξk =

∣∣∣∣∣∣
β(t)∑
j=1

xkjcvmt(j)−

1 +

α(t)∑
i=1

yi

−1
α(t)∑
i=1

yi

β(t)∑
j=1

xijcvmt(j)

∣∣∣∣∣∣
Electricity consumption minimization :

min

α(t)∑
i=1

et(i)yi

Number of machines in the queue :

min

β(t)∑
j=1

xα(t)+1,j

Load balancing of the processing power :

max yi

β(t)∑
j=1

xijpt(i, j), ∀i ∈ {1, . . . , α(t)}

Number of used machines min

α(t)∑
i=1

yi.

The problem is already NP-hard in its mono-objective form,
just by considering the load balancing in the processing
power that reduces in fact to a bin packing problem which
is already NP-hard [4] and by extension its multi-objectie
variants become NP-hard also.

4. EXPERIMENTATION
For the initial experimentation phases we have considered

a static environment with a fixed number of physical ma-
chines and a fixed number of virtual machines having as
objective functions the ones described in the above section.
In order to provide a glance of the topology of the Pareto
front we enclose in Figure 1 some preliminary results includ-
ing approximate Pareto fronts obtained during the dynamic
process be means of the Indicator Based Evolutionary Algo-
rithm (IBEA).

A homogeneous environment is modeled in the follow-
ing where all the machines are described by different power
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steps, i.e. computational power vs amount of energy re-
quired. For each virtual machine the computational require-
ment per state is given as a percentage of the total proces-
sor’s power. The objectives to optimize, as previously de-
scribed, are (1) to minimize the number of machines used,
e.g. all machines switched off when no virtual machines are
present, (2) assure load balancing, here expressed with re-
spect to the amount of memory used, (3) minimize the num-
ber of inactive virtual machines, i.e. placed in the queue,
(4) maximize overall processor usage, and (5) reduce energy
consumption. The following extreme points, used hereafter
to assess the performance of the used algorithms, are of par-
ticular interest:

• no machines used – no energy consumption, only use-
ful when no virtual machines are present, i.e. all ma-
chines switched off, here assuming no knowledge re-
garding the future state of the system in terms of ar-
rival of v irtual machines. An algorithm exploring the
different possible configurations the system can be in
has to provide one solution for which no physical ma-
chines are active.

• empty queue – no inactive virtual machines. As all
virtual machines are assigned and running, the mini-
mal number of physical machines that can be used has
to be determined while efficiently switching into the
availab le power states. As a simplification, one can
consider a case where no queue can be used and all
the virtual machines have to be scheduled. The trade-
off to be assured in this case hence only considers the
number of machines used, loa d balancing efficiency,
provided computational power and energy consump-
tion. Like for the previous point, if all machines can
be scheduled, e.g. equal number of virtual and physi-
cal machines, and if all constraints can be fulfilled, a n
efficient algorithm should provide a solution for which
all the virtual machines are assigned to some physical
machines.

• load balancing – given a fixed number of active physical
machines, the exploration algorithm has to be able to
determine corresponding power states such that (a) a
maximum number of virtual machines can be executed
w ith maximum performance, and (b) load balancing
in terms of used/available memory is assured.

A graphical representation of different Pareto approxi-
mate fronts, for different objectives, is given in Figure 1. All
the above described extremes are included in the approxi-
mated front, offering the possibility, for a real situation, to
chose between maximizing performance, minimizing energy
consumption or ensuring a strong load balancing.

5. CONCLUSIONS
In this paper we proposed a new load balancing model

adapted to the needs of sustainable ICT in an university
campus environment. The model follows the requirements of
the future Belval campus, University of Luxembourg. New
test scenarios were defined and preliminary results presented
for the case of dynamic load balancing in heterogeneous en-
vironments. The complexity of the problem conducts us fur-
ther to the development of learning strategies to be included
in the dynamic framework in order to anticipate consump-
tion needs, e.g. of particular importance when relying on
renewable sources like photovoltaic cells. The results ob-
tained so far allowed us to provide an initial overview of the
compromise solutions that can be obtained in order to ob-
serve their evolution over time given environment changes.
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