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ABSTRACT

This paper investigates XCS performance on a scarce and
noisy artificial and a real-world data set. The real-world
data set is derived from an E-Learning study, in which mo-
tivation was correlated with the adaptation of difficulty. The
artificial data set was generated to evaluate if XCS can be
expected to mine information from the real-world data set.
By adding sparsity and noise to the artificial data set, mim-
icking the properties of the real-world data set, we show that
XCS can handle scarce and noisy data well. We furthermore
show that the extracted structure contains problem-relevant
information, and that revealed structures in the real-world
data correspond to actual psychological learning theories.
Thus, the contributions of the paper are twofold: (1) We
show that XCS can mine highly scarce and noisy data; and
(2) the results suggest that the current motivational state
of the user may be utilized to adapt an E-Learning program
for improving learning progress.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complezity mea-
sures, performance measures

General Terms

Experimentation
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1. XCS

XCS is a learning classifier system, which was introduced
by Stewart Wilson [9]. As such, it evolves rules, using re-
inforcement learning techniques for rule evaluation and a
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genetic algorithm for rule evolution. The system has been
successfully applied to various classification and datamining
problems, as well as reinforcement learning problems [1, 2,
3]. Moreover, due to its rule-based representation, knowl-
edge extraction is easy to accomplish [10]. That is, the
system is not only suitable to yield good classification ac-
curacy, but it is also suitable to extract particular feature
dependencies hidden in the analyzed data.

We utilize an XCS version that processes integer-valued
inputs, similar to Wilson’s XCSI setup [11]. Moreover, we
do not use any action encoding, similar to the XCSF setup.
Thus, our XCS setup specifies no action or classification, and
the system predicts one reward value. To avoid further name
confusions, we will refer to our setup as an XCS system.

We analyze XCS performance in a case where only very
scarce and noisy data is available for learning. The data
set was extracted from an E-Learning study, in which the
current user motivation was correlated with task difficulty
adjustments.

2. DATA ENCODING AND GENERATION

The focus of this work was the extraction of adaptation
strategies for E-Learning programs based on the motiva-
tional state of the user. Each participant of the conducted
study worked through two successive learning phases, which
consisted of a learning block, during which 10 tasks were
presented, and two test blocks, during which performance
was assessed. A motivational questionnaire, based on the
one introduced in [6], was used to detect the learner’s cur-
rent motivational state, which was subdivided into anxiety,
probability of success, interest, and challenge. Each factor
was encoded by three possible values: low, medium, or high.
At the beginning of each learning block, adaptation of task
difficulty took place, increasing, decreasing, or maintaining
the previous level of difficulty. This adaptation of difficulty
was randomly applied by the E-Learning program during
the study to gain a broad sample of data. Within a learning
block, difficulty was further adapted according to the user’s
performance, increasing (decreasing) the difficulty after two
successive correct (incorrect) answers.

The study was conducted with 37 participants, yielding
a data set of 74 data entries. Further details on the study,
the participant distribution, and prior data analyzes can be
found in [4].

The features of each data entry consisted of 5 nominal
values, each of which could take on three actual values. This
yields a problem input space size of 3° = 243 possible input



value combinations. Since the study provided us with 74
data entries, maximally 30.5% of the problem space could
be covered.

3. EVALUATION ON ARTIFICIAL DATA

We now proceed with analyzing if XCS is able to identify
the hidden systematics in the artificial data set, which was
based on a decision tree structure. This structure simulated
an intuitively logical and easily verifiable artificial scenario,
with comparable characteristics to the real-world scenario.
To imitate the scarcity and inaccuracy of real data, we limit
the number of different input values to the number of values
derived from the study, and add Gaussian noise.

We evaluate XCS performance dependency on three cru-
cial parameters: its maximum population size IV, the num-
ber of learning iterations 7', and the start of the compaction
mechanism C. We, furthermore, vary the noise ratio. In-
tuitively speaking, parameter N fosters competition in the
population: give a large population, competition is low and
learning is delayed, however, given a very small value, com-
petition may be too strong. Parameter T specifies the time
during which XCS can evolve appropriate rules. Enough
time needs to be provided for XCS to converge - however,
overly long learning may also result in overfitting. The
compaction mechanism simply stops mutation and crossover
operators from being applied, thus condensating the pop-
ulation to the most dominant, accurate classifiers at that
time. All reported evaluations are done using ten indepen-
dent learning runs, reporting the average values for mean
absolute error and number of distinct classifiers.
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Figure 1: Size-limited, noisy artificial data set with
N =400 and C = 75% of T

Fig. 1 shows XCS performance on scarce and noisy artifi-
cial data with various noise ratios. The figure shows that, as
can be expected, noise has a major influence on the average
error. The higher the noise, the higher the average error,
irrespective of T'. The number of distinct classifiers, on the
other hand, drops when noise is added. More noise, however,
does not have any significant influence on the number of dis-
tinct classifiers, which decreases for a higher T, irrespective
of noise. The results suggest that 7" = 100,000 or higher
is appropriate. For this setting, we can expect a number
of distinct classifiers lower than 20, which guarantees some
generalization over the data.

Table 1 shows one batch of classifiers detected by XCS
on an artificial size-limited and noisy data set, with T" =
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100,000 and noise of 0.2. This particular batch reached
an average error of 0.178 with 13 classifiers. The last two
columns of the table indicate the correctly predicted per-
centage of the problem space that is covered by a rule, with
reference to the entire problem space and the problem space
covered by the data set, respectively.
All classifiers are able to predict the part of the problem
space covered by the data set correctly, i.e. they can predict
if learning success is rather high or low. 7 of the 13 classi-
fiers can predict their entire coverage correctly and all 6 of
the remaining classifiers are able to predict at least 50% of
their coverage correctly.

To ensure further that we gain reliable rules, we test them
on unseen data using cross-validation.
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Figure 2: Cross-validation on size-limited, noisy ar-
tificial data set with N = 400, T = 100,000 and
C=7%of T

Fig. 2 shows the average learning and test error for the
artificial data with several levels of Gaussian noise and T =
100, 000. Both, learning and test error increase significantly
with increasing noise, so that for a high noise ratio the rules
derived from XCS cannot feasibly predict unknown data,
but will make virtually random predictions, which allow no
conclusions to be drawn about the actual reward. For a
noise of 0.2 or smaller, however, the test data indicates that
the system is able to reliably learn an acceptable number of
rules, which can predict unknown data feasibly well.

4. PERFORMANCE ON REAL-WORLD
DATA

100 T T

T
Average Error  +

X x
ol XXX % %« x x x NosofDinstinck Classifiers . % 3

1L i

B S S S S S S S S U S S S S
0 50 100 150 200
T (1000s)

0.1

250

Figure 3: Real-world data set with N = 400 and
C =75% of T, log-scaled

Fig. 3 shows the average error and the number of distinct
classifiers for the real-world data. The average error remains
stable around a value of 0.139 for 7" > 40,000. This is
comparable to, and even slightly lower than, the average
error achieved in the artificial data set for a noise of 0.2,
which is an acceptable noise ratio. The number of distinct
classifiers decreases significantly for up to 17" = 80, 000. For
higher T', it only decreases slightly, which again coincides
with a noise of 0.2 in the artificial data.

As XCS with the real-world data produces similar results
to the artificial data with noise of 0.2, we can hope to gain



Anx | Succ | Int | Chall | Adapt
2 1-2 1-2 | 0-2 1
1-2 0-2 0-2 |1 2
1-2 0 1 0-2 0

1 2 0 1-2 1
0-2 1-2 0-2 | 0-2 0
0-1 0-1 0-2 | 0-2 2
1-2 0 1-2 | 1-2 0-2
2 0-1 0 0-1 0-1
1 1 0 1-2 1

2 0-2 0-2 | 2 2
0-1 0-2 0-2 | 0-2 0

0 0-2 0 0-2 1
0-1 0-2 1-2 | 0-2 1

Reward | Err Fit | CorTot | CorSet
0.597 0.35 0.98 | 1.0 1.0
0.153 0.28 0.21 | 0.66 1.0
0.815 0.001 [ 0.99 | 0.5 1.0
1.210 0.00 1.0 1.0 1.0
0.007 0.06 1.0 1.0 1.0
0.747 0.08 1.0 0.78 1.0
0.021 0.03 1.0 | 0.67 1.0
0.606 0.13 1.0 0.5 1.0
0.863 0.13 1.0 1.0 1.0
0.214 0.09 1.0 1.0 1.0
-0.054 0.16 1.0 1.0 1.0
0.824 0.18 1.0 0.67 1.0
0.156 0.18 1.0 1.0 1.0

Table 1: A set of rules for the test function with limited input and noise of 0.2, with N = 400, 7" = 100, 000

and C = 75% of T
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Figure 4: Cross validation with real-world data set
with N =400 and C = 75% of T

acceptable results using cross validation. Fig. 4 shows the
average error for the learn and test data derived from cross-
validation with the real-world data for various choices of T
The learning error stays around 0.08, while the test error
never exceeds 0.24. These results show a slightly higher
error than the results for artificial data without noise but
are, again, comparable to, and even slightly lower than, the
results for artificial data with noise of 0.2. We, therefore,
conclude that XCS is able to extract feasible information
from the real-world data.

5. KNOWLEDGE EXTRACTION AND
ANALYSIS

Our evaluations, using artificial data as well as cross-
validation, suggest that XCS is able to derive reasonably
reliable rules from scarce and noisy data.

To support these results further, we extract a number of
stable rules from ten runs with 7" = 160, 000, N = 400 and
C = 75% of T. We only consider those rules with fitness
greater than 0.9 and experience greater than 5000, which
appeared in at least two different runs. This final set of
12 rules is shown in Tab. 2. The first column gives a rule
number to every rule. The next five columns show the rule.
The last column shows the reward prediction from every
instance of this rule. Predictions for the same rule always
show a similar value with the highest deviation being 0.218
for Rule 2. Rule 4 subsumes Rule 3, Rule 7 subsumes Rule
5 and Rule 10 subsumes Rule 11 as well as Rule 12.

To analyze the validity and utility of the extracted knowl-
edge, we now interpret the extracted rules according to two
well-known, widely accepted psychological learning theories
that include motivational aspects.
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5.1 Zone of Proximal Development (ZPD)

The zone of proximal development (see [7]) predicts that
the highest learning success can be expected if expertise and
difficulty are on a similar level as depicted in Fig. 5.

difficulty_

ZPD

expertise=
Figure 5: Zone of Proximal Development (cf. [5])

We interpret challenge as an indication for the interaction
between task difficulty and learner’s expertise. More pre-
cisely, this interpretation assumes that high challenge indi-
cates that the difficulty exceeds the learner’s expertise while
low challenge indicates, vice versa, that the learner’s exper-
tise exceeds difficulty. A balance of difficulty and expertise
will, in this scenario, result in medium challenge. High chal-
lenge should then indicate that difficulty is too high and the
learner will leave the ZPD. In this case, reducing the level of
difficulty will return the learner into the ZPD and therefore,
as a tendency, increase learning success. This is supported
by Rule 1. If, on the other hand, difficulty is decreased fur-
ther when a learner reports low to medium challenge, they
leave the ZPD because difficulty is too low for their exper-
tise, resulting in low learning success, like Rule 2 predicts.
The same holds if the difficulty is not decreased for high
challenge (see Rule 11). All other rules give no indication
for either challenge or adaptation.

5.2 Yerkes-Dodson Law

The Yerkes-Dodson Law (see e.g. [8]) assumes an inter-
relation between arousal, task difficulty, and performance.
The law postulates that a certain amount of arousal, i.e.
motivation, is necessary to activate learning. For easy tasks,
higher activating motivation is expected to result in higher
performance. For difficult tasks, however, too high acti-
vating motivation may result in a decrease of performance
again.



No. | Anx | Suc | Int | Chal | Adapt | Reward

1 0-2 0-2 0-1 | 1-2 0 0.727, 0.833

2 0-2 2 0-1 | 0-1 0-1 0.379, 0.396, 0.423, 0.597
3 0-2 1-2 1 0-2 0-1 0.596, 0.633

4 0-2 0-2 |1 0-2 0-1 0.620, 0.833

5 1-2 0-2 0-1 10 0-2 0.479, 0.538

6 1-2 1-2 0-1 | 1-2 0-2 0.670, 0.625, 0.634

7 1-2 0-2 |02 10 0-2 0.454, 0.473, 0.535

8 2 0-2 0-2 | 0-2 1 0.704, 0.709, 0.741, 0.749, 0.763
9 0 0-1 |02 |02 1-2 0.462, 0.473, 0.497, 0.502
10 0-2 2 1-2 | 0-2 1-2 0.454, 0.517, 0.594

11 0-2 2 1-2 | 1-2 1-2 0.466, 0.513

12 0-2 2 2 0-2 1-2 0.437, 0.481

Table 2: Rules derived from the study’s data

Anxiety may be such an activating motivational factor. In
the study, self-assessed anxiety has to be seen in the context
of performance having no consequences for the participants.
Therefore, we assume that even reported high anxiety does
not leave the range where it is activating rather than block-
ing learning. Consequently high (low) anxiety should lead
to a high (low) learning success. This is confirmed by Rules
8 and 9, respectively. Medium to high anxiety, which is
specified in Rules 5, 6 and 7, shows a wider range in learn-
ing success but mainly within the boundaries of the learning
success of Rules 8 and 9.

Interest can be analyzed in the light of the same law. In-
terest, however, may take the full range in the scope of the
study, so that we expect medium interest to result in high
learning success, and low or high interest in a lower learning
success. Rules 3 and 4 show an acceptable learning success
for medium interest. Rules 2 and 5 show a low learning
success for low to medium interest and Rules 10, 11 and
12 show a low learning success for medium to high inter-
est. Rules 1 and 6, however, contradict this theory. Rule 1
shows a very high learning success for low to medium inter-
est. This might be due to other factors, such as ZPD. Rule 6
also shows a rather high learning success for low to medium
interest. Rule 6 differs from Rule 5 mainly in challenge, sug-
gesting that high challenge may compensate for the lack in
interest.

6. CONCLUSIONS

In this paper, we utilized XCS to extract information from

scarce and noisy data. With only 74 data sets, the learning
material did not cover the entire problem space. Similarly,
only a small number of sets were available for each covered
condition, inevitably yielding noisy data samples.
We used data from an intuitively logical and easily verifiable
artificial scenario to evaluate XCS performance. With this
artificial data set, we were able to show that XCS is able to
extract rules from scarce and, to some extent, noisy data.
We could therefore use XCS to extract adaptation strategies,
which are based on the motivational state of the user, for an
E-Learning program. This real-world data showed a simi-
lar behavior to the artificial data with a noise ratio of 0.2,
which indicated that XCS could extract knowledge from the
data. 10-fold cross-validation, as well as consistency with
psychological theories on learning, supported the reliability
of the extracted rules.
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We conclude that, when using adequate parameter set-
tings, XCS can handle scarce and noisy data well. More-
over, general and reliable rules can be extracted from the
data. Further studies have to confirm the reliability of the
extracted rules, as well as their applicability in E-learning
scenarios.
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