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ABSTRACT 
This paper describes a new approach for building evolutionary 
optimisation algorithms inspired by concepts borrowed from 
evolution of social behaviour. The proposed approach utilises a 
set of behaviours used as operators that work on a population of 
individuals. These behaviours are used and evolved by groups of 
individuals to enhance a group adaptation to the environment and 
to other groups. Each group has two sets of behaviours: one for 
intra-group interactions and one for inter-group interactions. 
These behaviours are evolved using mathematical models from 
the field of evolutionary game theory. This paper describes the 
proposed paradigm and starts studying its characteristics by 
building a new evolutionary algorithm and studying its behaviour. 
The algorithm has been tested using a benchmark problem 
generator with promising initial results, which are also reported. 
We conclude the paper by identifying promising directions for the 
continuation of this research. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods 
and Search—Heuristic methods 

General Terms 
Algorithms, Theory. 

Keywords 
Evolutionary Optimisation, Social Behaviour Evolution, 
Evolutionary Game Theory, Social Adaptive Groups. 

1. INTRODUCTION 
Nature has provided computer science with many sources of 
inspiration to develop a variety of optimisation approaches, of 
which natural selection or the Darwinian principle of "the survival 
of the fittest" has a lion’s share [4]. While many types of 
Evolutionary Algorithms (EAs) have been developed based on 
Darwin's theory and our modern knowledge of genetics, rarely if 
ever EAs, in their original form, have naturally shown the full 
range of properties exhibited by natural evolution. In particular, a 
varieties of extensions and modifications have been necessary in 
order to obtain EAs that could deal with multi-modal 
optimisation, multi-objective optimisation and dynamic 
optimisation problems [13]. Under the pressure of selection, 
individuals with higher fitness survive for longer and/or 

reproduce more often. It stands to reason that, with most genetic 
operators and representations, this leads the population to 
converge into an area in the vicinity of an optimum in the fitness 
landscape, thereby losing diversity, and with it the ability to, for 
example, identify more than one optimum or to track a moving 
optimum. It is clear that when the natural selection process is 
based merely on an individual’s fitness, losing diversity is an 
anticipated result and countermeasures have to be used. 
Consequently, to enable EAs to tackle these and other sorts of 
problems various techniques have been proposed (e.g. [2, 13]). 

In this paper we propose a different approach to building EAs 
which can potentially deal with the problems mentioned above 
where populations show a natural tendency to maintain diversity 
and form groups. We take inspiration from the evolution of social 
behaviour. The approach uses a notion of fitness of groups which 
takes different measures related to a group’s survival and 
performance into account. Each group has a set of social behaviours 
(operators) that individuals use in interacting with other individuals 
from the same or different groups. The exact nature of such 
behaviours is determined by a probability distribution which is 
tuned by an evolutionary process so as to maximise group fitness. 
Each behaviour serves a specific purpose and contributes to a 
group's survival or to the group's interaction with other groups. The 
behaviour probability distributions of each group are updated 
dynamically during the optimisation process using a dynamic 
mathematical model from evolutionary game theory [6]. 

Game theory was first introduced into evolutionary theory by 
Maynard Smith and Price who used it to model natural selection [9]. 
Subsequently many researchers have proposed models to deal with 
social behaviour evolution and population dynamics. In this paper, we 
use a simple dynamic mathematical model presented in [11] to evolve 
the social behaviours of groups. A distinguishing feature of our 
proposed approach is that the whole system is built based on notion of 
social behaviour evolution and evolutionary game theory. However 
there is some previous relevant work which was inspired by similar 
ideas. For example, an approach that incorporates ideas from game 
theory and social interaction into standard genetic algorithm to 
modify fitness values of individuals to slow convergence and avoid 
local optima was proposed in [7]. This approach uses models from 
game theory to represent social interaction and which improved the 
capability of problem solving of the standard genetic cycle. Their 
approach is somehow related to co-evolutionary approaches (e.g., 
[10]) in the dependency of an individual’s fitness on its relationship 
with other individuals.  It is worth mentioning that evolutionary game 
theory is different in many respects from classic game theory [12], 
especially in evolving the strategy (behaviour) distributions which 
represents the corner stone in our approach. In the general population 
structure and organisation, our approach has also some similarity to 
multi-population approaches and niching techniques (e.g. [1, 3]). 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
GECCO’11, July 12–16, 2011, Dublin, Ireland. 
Copyright 2011 ACM 978-1-4503-0690-4/11/07...$10.00. 
 

747



The rest of this paper is organised as follows. Section 2 introduces 
the proposed paradigm. Section 3 reports experimental results of 
initial implementation. In Section 4 we indicate some possible 
avenues for future work. 

2. PROPOSED APPROACH 
In the real world, individuals affect each other’s fitness value by 
social behaviours. These behaviours are used and evolved 
according to their impact on the collective performance, so the 
good behaviours will survive and be adopted, while bad 
behaviours will die away and disappear. Social interaction 
behaviours can be classified into four categories according to the 
change (increase or decrease) they cause to the fitness values of 
the initiator and the recipient. These four categories are: altruism, 
spite, selfishness and cooperation [5]. The pay-off of some 
behaviours is not immediate or direct to an individual's fitness. 
Instead, it may increase the relative fitness of the group in 
general, which in turn enhances the individual's fitness indirectly. 
Based on this concept, the environment that the individual needs 
to be adapted to includes not only the actual environment (the 
fitness landscape) but also the other individuals from the same or 
different groups that interact with, and have influence on the 
individual’s fitness. 

In the proposed paradigm, social behaviours are used as operators 
to move individuals in the search space, where individuals move 
and form groups as they socially interact.   Social behaviours are 
dealt with as a trait of a group of individuals that describe the way 
individuals behave toward other individuals from the same or 
different group. An appropriate representation for group 
behaviours is needed as well as an evolving mechanism. 

The proposed evolutionary system can be described as a tuple 
ܧ ൌ 〈ܺ, ,ܩ ܸ, ,௧ܤ ܺ ௧〉 whereܤ ൌ ሼݔଵ,… , ݔ|	ݔ ∈ ܴௗሽ 
represents a population of n real-valued individuals of length dim; 
G is the set of all possible groups, where ܩ ⊃ ௧ܩ ൌ ሼ	݃ଵ,… , ݃ே௧ሽ 
represents the set of groups formed by individuals at time t; V is 
the group behaviour probability distribution update function;  
and, finally, Bintra and Binter are two sets of transformations 
(operators)  which represent the intra-group and inter-group 
behaviours used in pairwise interactions between individuals, 
respectively. The transformations are defined as follows:  
൫ݔ

ᇱ, ݔ
ᇱ൯ ൌ ܾ൫ݔ, ܾ	where					൯,ݔ ∈  ௧ܤ

൫ݔ
ᇱ, ݔ

ᇱ൯ ൌ ܾ′൫ݔ, ′ܾ	where				൯,ݔ ∈  ௧ܤ
 

where b and b’ are functions that transform two individuals into 
two new individuals, as xi interact with xj. The behaviours cause 
to change the position of individuals in the search space. So, 
individuals move as they interact. 

A group ݃ ∈ ݃ ௧is defined asܩ ൌ ,௧ܯ〉 ,௧ߙ    ௧〉 whereߚ
௧ܯ ൌ ൛ݔ, ݔ 	 ∈ ܺ	หܵ൫ݔ, ൯ݔ  ߬ሽ,			and  

௧ߙ 	∈ ܴା
|ೝೌ|and∑ ௧ሺܾሻߙ ൌ 1∈ೝೌ   

 
௧ߚ 	∈ ܴା

|ೝ|and∑ ௧ሺܾ′ሻߚ ൌ 1ᇱ∈ೝ   
The function S measures the similarity between a pair of 
individuals and τ is a threshold. This definition means that 
individuals can form groups based on their similarity. In our 
initial implementation, we use the Euclidean distance as a 

similarity function (i.e.,	ܵሺݔ, ሻݕ ൌ 	ඥ∑ ሺݔ െ ሻଶݕ ). The formation 
of groups is a dynamic process as individuals move freely around 
the search space as a result of interactions. αt and βt are 
probability distributions over Bintra and Binter at time t, respectively, 

and αt(b) denotes the probability of using behaviour b by the 
group g at time t. A function V is used to evolve behaviours. This 
is done by updating their probability distributions.  

The process of evolving behaviours is based on assessing the 
effect of the behaviour on the group, and uses it to calculate the 
behaviour pay-off,	ݑሺܾሻ ൌ  ሺ݃ሻ݁ఏ௧ሺܾሻ, where θ can be either αܨ
or β, F(g) denotes a fitness function for groups, for ܾ	 ∈ ,ܤ ݁ఏ௧ሺܾሻ 
represents the effect rate of behaviour b, where B= {Cooperative, 
Selfish, Spiteful, Altruistic} could be either Bintra or Binter. The 
factors that should be included in calculating the fitness of a 
group must reflect different aspects of the group well-being and 
must not be based merely on the individual direct fitness values. 
The effect value of a behaviour measures the rate at which that 
specific behaviour contributes to the group fitness. 

Intra-group behaviours deal with moving individuals within the 
area where the group resides, whereas inter-group behaviours 
move individuals across group areas. The intra-group behaviour 
directs individuals to the promising locations in the area occupied 
by a group, while, at the same time, exploring the surrounding 
areas and maintaining a good spread in the distribution of 
individuals. The inter-group behaviour, instead, moves individual 
between groups and also move individuals randomly to new spots 
in the fitness landscape to investigate the possibility of forming 
new groups there, in case the new area has enough resources to 
sustain a group. In order for a group to decide how to move 
individuals according to the sets of behaviours, a group uses 
information on the local area of the fitness landscape perceived by 
group members. This information is synthesised in a quantity we 
call group centre. For group g, the centre is defined as ൌ

ሺ݃ሻ݁ݎݐ݊݁ܥ ൌ
ቀ∑ ௧ሺ,ሻ

ಿ
సభ ቁ

ே
 , where top(g,i) is a function that 

returns the ith  ranked member of group g according to individual 
fitness and Ntop = 0.4* |g| represents forty percent of the group 
size. The motion of individuals caused by social behaviour 
interactions uses the group centre as a reference. The change in an 
individual's position takes the form x’=x+∆x where ∆x is a 

y 
Cy

x 

Cx 

Cooperation

Group 1 Group 2 

y 
Cy 

x 

Cx 

Selfishness 

Group 1 Group 2 

y 
Cy 

x 

Cx 

Altruism 

Group 1 Group 2 

y 

Cy x 

Cx 

Spite 

Group 1 Group 2 

Random 
Point 

b. Inter-group interaction behaviours 
Figure 1: The proposed interaction behaviours 
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displacement vector. ∆x has to be computed in such a way to 
bring an individual closer to some target point and/or to push it 
away from some other point. Figure 1 depicts the two sets of 
social behaviours. In intra-group interaction behaviours (Figure 
1(a)), the direction of movement of an individual is decided on 
the basis of the fitness value of the individual with which the 
individual interacts, and also the position of that individual and 
the centre of the group. For example, if we want to move x closer 
to both y and the centre of the group C, then we need to compute 
d1= x-y and d2=x-C, where ∆x=-r1*biasy*d1–r2*biasC*d2, where 
ݏܾܽ݅	and	௬ݏܾܽ݅ ∈ ሾ0,1ሿ are suitable constants and ݎଵ		and	ݎଶ ∈
ሾ0,1ሿ are two random numbers. If, instead, we want to move x 
away from the centre and closer to y then the change in its 
position can be computed as ∆x = -r1*biasy*d1+r2*biasC*d2. And 
so on. Computing ∆x in inter-group interaction behaviours (Figure 
1 (b)) requires something different. If we are moving x closer to 
Z, where Z can be the centre of another group, a random point in 
the search space or the centre of x’s group itself, then the 
displacement is computed as ∆x = -d * r, where d = x –Z and 
ݎ ∈ ሾ0.95,1.05ሿ is a random number. 

The group fitness function is a linear combination of three values 
which represent three different aspects of group quality: the 
ranking, the size, and the volume of the space occupied by the 
group. Formally the group fitness is defined as follows: 
 

ሺ݃ሻܨ ൌ 	
|ீ|ିோሺሻ

|ீ|
 ݏݏ݁݊ݐ݅ܨ݁ݖ݅ܵ ቀܵ݅݁ݖ	,

||

|ீ|
ቁ 

௨
ೇೠ

หಸห

  

where g is a group and Rank(g) is a function that gives the 
ranking of g among other groups. For the purpose of ranking, 
groups are sorted in descending order. The sorting is based on the 
value of the expression 0.75*BestFitness+0.25*AverageFitness. 
The top group’s rank will be 0. The SizeFitness is as follows: 

ௌሻݔܽܯ,ሺܵݏݏ݁݊ݐ݅ܨ݁ݖ݅ܵ ൌ 	ቐ

ௌ

ெ௫ೄ
݂݅	ܵ ൏ ௌݔܽܯ

	1 െ
ௌିெ௫ೄ
ெ௫ೄ

݁ݏ݅ݓݎ݄݁ݐ
    

The output of this function increases as the value of S increases 
until it is greater than the value MaxS, beyond which the output 
starts to decrease. This function rewards groups with the “right 
size”, bigger or smaller sizes leading to less group fitness. The 
volume of the group, Volumet is the volume of a dim-dimensional 
sphere, the radius of which is computed as one half the diameter 
of the group (i.e., the distance between the two individuals further 
apart in the group). Volumepop is the volume of the search space 
(typically a multi-dimensional box). 

The process of evolving behaviours tries to find the right 
combination of intra- and inter-group behaviours to put the groups 
in some state of dynamic equilibrium. The evolution process 
updates the behaviours to provide a group with the required 
operators to cope with different environmental changes, including 
changes that are caused by other groups as they compete or 
cooperate. After a round of interactions, the procedure that 
evolves behaviours works out how each behaviour has influenced 
the relative fitness (group fitness), so we can apportion blame and 
credit. For intra-group behaviours of group g, the effect rate is 
computed as follows: 

݁ఈሺܾሻ ൌ
ఠሺሻ

ஐሺሻ
ቀݓଵሺܾሻ

ௌ௭ିௌ௭షభ
ௌ௭షభ

 ଶሺܾሻݓ	
షభିݐܣ
షభ



ଷሺܾሻݓ
௨ି௨షభ

௨షభ
ቁ  

where	ܾ ∈  ωt(b) is the number of occurrences of behaviour  ,ܽݎݐ݊݅ܤ
b and Ωt(g) is the total number of behaviours that caused changes 

to the group, by interaction behaviours initiated by group 
members or by members of other groups. At is the average fitness 
of group members at time t. The values of weighting parameters 
wi(b) are shown in Table 1 

Table 1: The values of weighting parameters wi(b) 

Behaviours (b) w1(b) w2(b) w3(b) 

Cooperative 0 0.5 -0.5 
Selfish 0 0.5 -0.5 
Spiteful -0.33 -0.33 0.33 
Altruistic -0.33 -0.33 0.33 

The effect rates of inter-group behaviours Binter are given by: 

ఉ݁௧
ሺ݁ݒ݅ݐܽݎ݁ܥሻ ൌ 1 െ ቚ

|ீ|ି|ீషభ|

|ீషభ|
ቚ  1 െ ቚ

ௌ௭ିௌ௭షభ
ௌ௭షభ

ቚ  

ఉ݁௧
ሺ݈݂݄ܵ݁݅ݏሻ ൌ 	1 െ ቚ

|ீ|ି|ீషభ|

|ீషభ|
ቚ 

ௌ௭ିௌ௭షభ
ௌ௭షభ

  

ఉ݁௧
ሺ݈ܵݑ݂݁ݐ݅ሻ ൌ

|ீ|ି|ீషభ|

|ீషభ|
െ

ௌ௭ିௌ௭షభ
ௌ௭షభ

  

ఉ݁௧
ሺܿ݅ݐݏ݅ݑݎݐ݈ܣሻ ൌ 1 െ ቚ

|ீ|ି|ீషభ|

|ீషభ|
ቚ െ

ௌ௭ିௌ௭షభ
ௌ௭షభ

  

After computing the effect rates and the group’s fitness, we can 
update the behaviour distributions of the group and prepare for 
next round of interactions. First we find the behaviours pay-
off	ݑሺܾሻ ൌ ܾ ሺ݃ሻ݁ఏ௧ሺܾሻ whereܨ ∈  and B could be either Bintra ,ܤ
or Binter. The average of the pay-off of the two (intra- and inter-
group) mixed behaviours is as follows: 

ܷሺߙ௧ሻ ൌ ∑ ௧ሺܾሻ∈ೝೌߙሺܾሻݑ and ܷሺߚ௧ሻ ൌ 	∑ ௧ሺܾሻ∈ೝߚሺܾሻݑ

Then we use the replicator equation [11] to find the new 
distributions of group behaviours. Namely, 

ሶ௧ሺܾሻߙ ൌ ሺܾሻݑ௧ሺܾሻ൫ߙ െ ܷሺߙ௧ሻ൯ 
௧ାଵሺܾሻߙ ൌ ሶ௧ሺܾሻߙ  ௧ሺܾሻߙ for	ܾ	 ∈  ௧ܤ
ሶ௧ሺܾሻߚ ൌ ሺܾሻݑ௧ሺܾሻ൫ߚ െ ܷሺߚ௧ሻ൯ 
௧ାଵሺܾሻߚ ൌ ሶ௧ሺܾሻߚ  ௧ሺܾሻߚ for ܾ	 ∈  ௧ܤ
Figure 2 shows the pseudo-code of our social adaptive groups 
evolutionary system. It is worth mentioning that all random 
numbers are generated uniformly. The relative frequency of inter- 
and intra-group interactions is an important parameter of the 
algorithm that needs to be correctly set.  

t=0 
Generate an initial random population X 
Evaluate population individual fitnesses 
Form groups set Gt 
Initialise behaviour distributions αt and βt for all ݃ ∈  ௧ܩ
Repeat 
 Repeat //interaction round 
  Randomly select between Inter- or Intra- group interaction 
  If intra-group interaction then 
   Randomly select x and y from a group ݃ ∈  ௧ܩ
   Randomly select b from Bintra according to αt of g   
  Else //inter-group interaction 
   Randomly select	ݔ ∈ ଵ݃ and ݕ ∈ ݃ଶwhere ଵ݃ ് ݃ଶܽ݊݀	 ଵ݃, ݃ଶ ∈  ௧ܩ
   Randomly select b from Binter according to βt of g1   
  End if 
  Compute ሺݔ′, ሻ′ݕ ൌ ܾሺݔ,  ሻݕ
  Replace x and y with x’ and y’, respectively 
 Until maximum number of interactions per iteration 
 t=t+1 
 Evaluate population individual fitnesses 
 Form groups set Gt 
 Update behaviour distributions αt and βt for all	݃ ∈  ௧ܩ
Until t reaches maximum number of iterations 

Figure 2: Pseudo-code for proposed evolutionary system 

749



3. EXPERIMENTAL RESULT  
In order to better study the performance of the proposed algorithm 
and the general behaviour and progress of groups as they move in 
(and, thus, explore) the fitness landscape, as mentioned above we 
conducted experiments in two-dimensional search spaces. The 
fitness landscapes were created using benchmark problem 
generator described in [8]. Figure 3 illustrates one such landscape 
and the result of a typical sample run. More specifically, Figure 
3(a) shows the fitness landscape. In Figure 3(b), the distribution 
of individuals and the process of group formation are illustrated 
taking snapshots of the population at 20-iteration intervals (with 
the top-left panel showing the initial random population). Figure 
3(c) describes the general behaviour of the algorithm from the 
point of view of the average of population fitness, the best-fitness-
so-far in the run. 

4. FUTURE WORK 
We plan to use the proposed approach on higher dimension 
problems and use various measures of performance such as peak 
coverage and population diversity to analyse and make a better 
understanding of the proposed approach. Dynamic optimisation 
problems will be used and the response of the approach to 

dynamism will be studied. We plan also to investigate using our 
approach on a wider range of computational problems, such as 
combinatorial and discrete problems. We also plan to investigate 
using different population dynamics and replicators models for 
behaviours evolving mechanism. New features related to group 
will be studied. Such features can be used to make a better 
assessment of the behaviour effects and also can be used to 
improve the way we evaluate group fitnesses. Further features of 
groups related to increasing the perception of the group to the 
fitness landscape and enhancing the collective performance of the 
population, will also be studied and incorporated in the proposed 
model. 
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a. Fitness landscape 

 
b. Individual distribution in the search space 

 
c. Performance of the proposed algorithm 

Figure 3: Performance in a 2-dimensional environment
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