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ABSTRACT
This paper presents a deterministic multiobjective optimiza-
tion algorithm for discovering driving strategies. The goal
is to find a set of nondominated driving strategies with re-
spect to two conflicting objectives: time and fuel consump-
tion. The presented multiobjective algorithm is based on
the breadth-first search algorithm and Nondominated Sort-
ing Genetic Algorithm (NSGA-II). Experiments on a 10-km
route show that the results significantly depend on the dis-
cretization of the search space.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—control theory, graph and tree search
strategies, heuristic methods

General Terms
Design, Algorithms, Performance

Keywords
driving strategies, multiobjective optimization, traveling ti-
me, fuel consumption

1. INTRODUCTION
The cost of vehicle driving mainly depends on human time

spent and the fuel cost. Optimizing just one of these objec-
tives yields undesirable and often unrealistic results. There-
fore, both time and fuel consumption have to be taken into
account simultaneously when constructing a driving strat-
egy.

Several researchers have optimized both time and fuel
consumption by including them into a cost function as a
weighted sum, or by optimizing only fuel consumption where
time was a constraint. Then single objective optimization
algorithms were used. These algorithms find only one solu-
tion which, in addition, significantly depends on the weights
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in the cost function. Moreover, it is not clear how to deter-
mine the weights. In order to find various driving strategies
with respect to time and fuel consumption, a multiobjec-
tive approach has to be used. This approach produces a set
of nondominated strategies that are incomparable since no
strategy is better in both objectives than any other strat-
egy. Such set of strategies enables the user to select the
preferred one without limiting the time consumption in ad-
vance and without defining the weights. Consequently, a
user, e.g., a transportation company, that frequently oper-
ates on the same route can each time select a strategy with
different trade-off between time and fuel consumption based
on current requirements.

This paper presents a multiobjective optimization algo-
rithm that searches for driving strategies and minimizes time
and fuel consumption. It is a deterministic algorithm based
on a breadth-first search algorithm that includes mecha-
nisms from the Nondominated Sorting Genetic Algorithm
(NSGA-II) [4]. A strategy is a set hypercubes which are
subspaces in the space of vehicle and route states, e.g., ve-
hicle velocity and route inclination. A hypercube stores the
control actions, e.g., throttle percentage and gear, that are
applied to the vehicle if its state and position on the route
correspond to the hypercube. The initial results show that
the quality of the strategies significantly depends on the hy-
percube discretization.

The paper is organized as follows. Section 2 describes the
related work in this field. The implemented driving simula-
tion is presented in Section 3. Section 4 describes the pro-
posed multiobjective optimization algorithm that searches
for a set of nondominated driving strategies. The exper-
iments and results are described in Section 5. Section 6
concludes the paper with the ideas for future work.

2. RELATED WORK
Several researchers studied the minimization of vehicle

time and fuel consumption. However, they included the
objectives into a single cost function and solved single ob-
jective problems. Monastyrsky et al. [11] implemented an
algorithm based on a dynamic programming approach that
finds a global optimum but can be used only for limited
route lengths due to the complexity of dynamic program-
ming. Ivarsson et al. [8] used an analytical approach that is
appropriate only for routes with small gradients. In addi-
tion, this approach requires a lot of knowledge about the ve-
hicle engine, e.g., specific fuel consumption diagram, which
is usually unknown. Hellstrom et al. [6] used dynamic pro-
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gramming as a predictive algorithm that searches for optimal
driving strategy by taking into account only a finite route
length ahead of the vehicle. A similar approach was pre-
sented by Huang et al. [7], who used constrained nonlinear
programming.

Another problem the researchers focused on is the search
for an optimal traveling route. For example, Benjamin [2]
optimized the traveling time and the vehicle safety. Both ob-
jectives were included into a single objective function. The
approach is appropriate only for limited space of possible
routes since the whole space has to be searched at each sim-
ulation step.

However, only few researchers, e.g., in the field of rac-
ing games, focused on multiobjective optimization, but did
not include both time and fuel consumption. For example,
Agapitos et al. [1] studied the driving strategy optimization
of racing game competitors based on several objectives, e.g.,
avoiding collisions and minimizing steering changes. They
used a simplified vehicle model that considers the vehicle
as a point that moves with constant velocity in the selected
direction.

Most researchers focus on single objective optimization.
Moreover, they search for strategies that include some know-
ledge on the vehicle operation. However, from the user point
of view, such knowledge is unavailable. More precisely, a
user can only predict the vehicle response since the exact
vehicle response to his/her actions is not known. There-
fore, the black box approach is the only reasonable one. In
addition, if multiobjective problems are addressed, the re-
searchers use over-simplified vehicle models. Searching for
driving strategies by modeling a real vehicle as a black box
driving on a real route and using a multiobjective optimiza-
tion algorithm has not been tested yet. An initial version of
an algorithm of this type is presented in this paper.

3. DRIVING SIMULATION

3.1 Driving Simulator
The driving simulator is implemented as a black box. It

receives the data about the current vehicle velocity vV , the
route that has been already traveled sV , the route that has
to be traveled ΔsV , and the control actions, i.e., throttle and
braking percentage εV and gear gV . The throttle percentage
is εV if εV > 0, otherwise it is 0. The braking percentage
is −εV if εV < 0, otherwise it is 0. It outputs the updated
vV and sV , and the time t and fuel c consumption on the
traveled route [5].

The route is divided into segments. Each segment is de-
fined with its length sS, turning radius rS, inclination αS ,
and velocity limit vS,lim. The current segment is given
with sV . The final velocity limit vS,limit is the minimum
limit among vS,lim and maximum turning velocity vT =√
rSg cosαScs [3], where g is the gravitational acceleration

and cs is the static friction coefficient.
To simulate the vehicle traveling on the route ΔsV , the

vehicle simulator described in Section 3.2 is applied in steps,
each step simulating vehicle driving at a constant velocity
for a small time Δt. Afterwards, the vehicle velocity and
position on the route are updated, Δt is added to t, and
Δc is added to c. Finally, the velocity feasibility is checked.
The driving is infeasible if vV > vS,limit or vV ≤ 0. In this
case the simulation ends.

3.2 Vehicle Simulator
The input data for the vehicle simulator are vV , αS , εV ,

gV and Δt. The forces acting on the vehicle are the mov-
ing force FE, engine braking force FEB , tire braking force
FWB , wheel friction force FW , inertial force Fa, aerody-
namic drag force FA, and tangential component of the grav-
itational force Ft. They are combined together as follows
[10]: FE − FEB − FWB = FW + Fa + FA + Ft.

The moving force is 0 if εV ≤ 0. Otherwise, it is [10]:

FE = TE iG[gV ]iD
rW

η, where engine torque TE = εV TE,max,

engine speed nE = nW iG[gV ]iD, maximum engine torque
TE,max = fTE,max (nE), wheel speed nW = vV

2πrW
, TW is

wheel torque, rW is wheel radius, iG are gear ratios, iD
is differential ratio, η is vehicle transmissions mechanical
efficiency, and fTE,max (nE) is maximum torque function.

The engine braking force is 0 if εV > 0. Otherwise, it is

[10]: FEB = TEB iG[gV ]iD
ηrW

, where engine braking torque TEB

is a linear function between (nE,min, TE,Min) and (nE,max,
TE,Max

3
). Here, nE,min and nE,max are minimum and max-

imum engine speeds, and TE,Min and TE,Max are minimum
and maximum engine torques at any nE . The tire brak-
ing force is 0 if εV ≥ 0. Otherwise, it is [9]: FWB =
μmV g cosαSεV , where μ is tire braking force percentage,
and mV is vehicle mass. The wheel friction force is: FW =
crmV g cosαS, where cr is the rolling resistance coefficient.
The aerodynamic drag force is: FA = 0.5ρv2V Axcx, where
ρ is air density, Ax is vehicle frontal area, and cx is vehicle
aerodynamic coefficient. The tangential component of gravi-
tational force is: Ft = mV g sinαS . The inertial acceleration
is: aV = Fa

mV
[10].

The vehicle state and position are updated as follows [10]:
vV = vV + aV Δt, Δc = fc(TE, nE)PEΔt, PE = 2πTEnE ,

Δs = vV Δt + aV Δt2

2
, where PE is the engine power, Δc

is the fuel consumption, fc(TE, nE) is the fuel consumption
function, and Δs is the traveled route. When vV = 0, the
vehicle starts moving only if gV = gV,min (and aV > 0),
since TE,max = 0 if nE < nE,min and gV > gV,min.

4. ALGORITHM FOR DISCOVERING
DRIVING STRATEGIES

This section presents a deterministic multiobjective opti-
mization algorithm for finding driving strategies based on
the breadth-first search algorithm [13] and Nondominated
Sorting Genetic Algorithm (NSGA-II) [4]. A strategy is a
set of hypercubes which are subspaces in the space of ve-
hicle and route states. This space has the following seven
dimensions: vehicle gear gV , vehicle engine speed nE , cur-
rent segment inclination αCS , current segment velocity limit
vCS ,limit, next segment inclination αNS , next segment ve-
locity limit vNS ,limit, and route to the next segment sNS .
Hypercubes store vehicle control actions εV and gV .

The continuous space dimensions, i.e., nE , αS , vS,limit,
sNS and εV , are discretized into intervals inE , iαS , ivS,limit ,
isNS and iεV by defining the interval bounds. Parameters
αS and vS,limit are discretized only once for both current
and next segments. For example, αS is discretized into nαS

intervals by defining the vector of bounds DαS = [αS,min,
αS,1, αS,2, . . . , αS,nαS

−1, αS,max]. A hypercube can be
presented as a rule as follows:
IF gV = gV,RU , nE ∈ inE,RU , αCS ∈ iαCS,RU , vCS,limit ∈
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Algorithm 1Multiobjective optimization algorithm for dis-
covering driving strategies

SpopSpopSpop = {Sinit} {Sinit is empty strategy}
SfinalSfinalSfinal = {}
repeat
Spop,nextStepSpop,nextStepSpop,nextStep = {}
for all S ∈ SpopSpopSpop do
Spop,tempSpop,tempSpop,temp = {}
if {currently observed hypercube of strategy S stores
control actions} then
Spop,tempSpop,tempSpop,temp = {S}

else
for all iεV,control,RU

iεV,control,RUiεV,control,RU do
for all gV,control,RUgV,control,RUgV,control,RU do

Sclone = S.clone()
Sclone.add(iεV,control,RU , gV,control,RU)
Spop,tempSpop,tempSpop,temp.add(Sclone)

end for
end for

end if
for all Stemp ∈ Spop,tempSpop,tempSpop,temp do

Stemp.drivingSimulationForOneStep()
if Stemp simulated driving on whole route and fea-
sible then
SfinalSfinalSfinal.add(Stemp)

else if Stemp feasible then
Spop,nextStepSpop,nextStepSpop,nextStep.add(Stemp)

end if
end for

end for
reduceNumberOfStrategies(Spop,nextStepSpop,nextStepSpop,nextStep) {apply Fa-
st Nondominated Sort and Crowding Distance [4]}
SpopSpopSpop = Spop,nextStepSpop,nextStepSpop,nextStep

until SpopSpopSpop = {}
SfinalSfinalSfinal = returnNondominatedStrategies(SfinalSfinalSfinal) {apply
Fast Nondominated Sort [4]}
return SfinalSfinalSfinal

ivCS,limit,RU , αNS ∈ iαNS,RU , vNS ,limit ∈ ivNS,limit,RU , sNS ∈
isNS THEN iεV,control,RU , gV,control,RU

The multiobjective optimization algorithm for discovering
driving strategies is a deterministic algorithm that searches
for driving strategies similarly to breadth-first search algo-
rithm. It starts with a single strategy where none of the
hypercubes stores the control actions. Afterwards, it simu-
lates the driving of a set of strategies through several steps
by using the algorithm described in Section 3 until the whole
route has been traveled.

A step is defined with the route length ΔsV where control
actions do not change. Control actions currently applied
to the vehicle are stored in the hypercube that covers the
subspace which includes the current vehicle and route state.
Since the control actions do not change within a hypercube,
the step ΔsV is defined with the route length interval isNS

of the hypercube.
If the control actions of the observed hypercube are not

defined yet, e.g., the initial strategy has no control actions,
they have to be defined before the simulation continues. The
number of combinations of control actions is |iεV,control,RU |×
|gV,control,RU |. For each combination, the strategy is cloned
and the combination is assigned to the new strategy. Since
the number of strategies grows, the maximum number of
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Figure 1: Inclinations and radii of the testing route.

Figure 2: Specific fuel consumption diagram.

strategies is limited with the population size Spop. This size
is maintained by applying the functions Fast Nondominated
Sort and Crowding Distance from the Nondominated Sorting
Genetic Algorithm (NSGA-II) [4] at each simulation step.
As a result, only the best and diverse strategies with respect
to the objectives are preserved. The algorithm is shown in
Algorithm 1.

5. EXPERIMENTS
The presented algorithm has been tested on several routes.

However, due to the space limit, we present the results of
a test on a single route. Its length is 10829 m. It is pre-
sented in more detail in Figure 1. The vehicle parameter
values used in the experiments are the following: gV,min = 1,
gV,max = 5, η = 0.8, μ = 0.9, ρ = 1.225 kg/m3, cr =
0.04, cs = 0.7, rW = 0.33 m, mV = 1700 kg, Ax = 2.16
m2, cx = 0.37, iG = [3.45, 1.94, 1.28, 0.97, 0.80], iD = 3.67,
nE,min = 800 min−1, nE,max = 6400 min−1. Besides, the
functions fTE,max (nE) and fc(TE, nE) defining the opera-
tion of the vehicle engine were derived from the specific fuel
consumption diagram [12] shown in Figure 2.

The algorithm was run three times with Spop = 100 and
different hypercube discretizations. However, the hypercube
gear dimension was always discretized into all five values.
The other dimensions were discretized as shown in Table 1.

The results shown in Figure 3 indicate that the quality of
the obtained strategies significantly depends on the hyper-
cube discretization. For example, if only time is minimized,
there are no significant differences among the discretizations.
On the other hand, if only fuel consumption is minimized,
the second and the third hypercube discretizations are bet-
ter than the first one. Moreover, the strategies found using
the second and the third discretization are incomparable,
since better strategies are found with respect to both ob-
jectives with the second discretization, and better strategies
are found with respect to fuel consumption only, using the
third discretization.
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Figure 3: Nondominated strategies in the objective
space.

These results show that a predefined hypercube discretiza-
tion is not appropriate. Therefore, we are currently studying
a two-level approach to discovering driving strategies. The
lower level is based on the algorithm described in this paper.
The upper level consists of an evolutionary algorithm that
evolves the hypercube discretizations and forms a final set of
nondominated strategies from all strategies found with the
applied discretizations.

6. CONCLUSIONS
This paper presented a deterministic multiobjective op-

timization algorithm for discovering driving strategies. It
searches for a set of nondominated strategies as sets of hyper-
cubes and aims to minimize the time and fuel consumption.
A hypercube is a subspace in the space of vehicle and route
states that stores the vehicle control actions. The algorithm
was tested using three different hypercube discretizations
and the results show that the quality of strategies signifi-
cantly depends on discretization and that no discretization
is better than the other discretizations. Therefore, the fu-
ture work will focus on the automatic search for appropriate
discretizations. Moreover, the results will be compared to
results of other single objective algorithms such as dynamic
programming.
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