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ABSTRACT 
Cardiac arrhythmia is the disruption of the normal electrical 
rhythm of the heart and is a leading cause of mortality around 
the world. To study arrhythmogenesis, mathematical models of 
cardiac myocytes and tissues have been effectively employed to 
investigate cardiac electrodynamics. However, among individual 
myocytes, there is phenotypic variability that is dependent on 
factors such as source location in the heart, genetic variation, 
and even different experimental protocols. Thus, established 
cardiac myocyte models constrained by experimental data are 
often untuned to new phenomena under investigation. In this 
study, we show direct links to parameter changes and differing 
electrical phenotypes. First, we present results exploring model 
sensitivity to physiological parameters underpinning electrical 
activity. Second, we outline a genetic algorithm based approach 
for tuning model parameters to fit cardiac myocyte behavior. 
Third, we use a genetic algorithm to transform one model type 
to another, relating simulation to experimental data. This model 
transformation demonstrates the potential of genetic algorithms 
to extend the utility of cardiac myocyte models by comparing 
different functional regions in the heart. 

Categories and Subject Descriptors 
J.3 [Computer Applications]: Life and Medical Sciences—
biology and genetics  

General Terms 
Algorithms, Design, Experimentation, Measurement, 
Performance, Reliability, Theory, Verification 

Keywords 
Cardiac Arrhythmia, Genetic Algorithm, Ion Channel 
Conductance, Repolarization Alternans 

 

1. INTRODUCTION 
The interplay of ion channels, pumps, transporters, and ion 
concentrations leads to cardiac electrical activity that induces 
contraction and the distribution of blood. Dysfunction of any 
component of the cardiac electrical system can increase the 
chance for cardiac arrhythmia, and thus sudden cardiac death. 
Annual mortality counts due to cardiac arrhythmia are estimated 
at 4-5 million globally [1]. 

Cardiac myocytes from different individuals and even within the 
same organism exhibit variable electrical behavior [2]. A key 
way in which cardiac myocytes differ is in the exact values of 
the maximum ionic conductances, which dictate maximum flow 
of ions through the cell membrane. This variance leads to 
different action potential (AP) morphology, such as different 
action potential duration (APD), when pacing at the same basic 
cycle length (BCL). The maximum conductance values 
themselves are affected by a number of factors, which include 
ion channel density, geometry of the cell membrane, genetic 
variation leading to structural differences, and regulation of the 
ion channels.  

For our first aim, to see the impact of each maximum 
conductance value, we varied the conductances individually. 
However, to see the impact of multiple parameters together, 
there is a combinatorial explosion when considering a parameter 
sweep over tens of possible parameters with multiple values. For 
our second aim, we used a genetic algorithm (GA) to navigate 
through a large parameter space, where parameters are 
considered simultaneously as the GA progresses. To solve 
optimization problems, GAs use computational correlates of 
evolutionary processes: selection, crossover, and mutation. In 
this study, the genotype is an array of conductance values for an 
individual. The phenotype is the electrical behavior, and we use 
an objective function targeting the arrythmogenic behavior of 
alternans across multiple pacing frequencies.  

Alternans of cardiac repolarization is a putative precursor to 
some lethal arrhythmias [3]. At the cellular level, alternans 
involves a beat-to-beat oscillation of the APD. Using pacing 
frequencies rapid enough to induce alternans, we construct an 
objective function containing alternans behavior. Rapid pacing 
induces alternans since ion channels are less likely to have 
recovered in subsequent beats. For our third aim, to study 
relations of different areas in the heart, we apply a GA to 
determine whether one myocyte type can be transformed into 
another, despite initial differences in AP morphology. 
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Figure 1. LR1 restitution profiles with maximum conductance values varied separately. Restitution profiles with a 10% increase 
and 10% decrease from the nominal conductance value are denoted in green and red respectively.  BCL began at 1200 ms and was 
decremented by 200 ms to 400 ms. APD was denoted by 90% repolarization. 

2. METHODS 
This study uses a combined computational and experimental 
approach. The computational component focuses on determining 
model sensitivity to physiological parameters and then using a 
GA to match arrhythmogenic behavior. The experimental 
component provides a target phenotype that tests the ability of a 
GA to transform one cell type to another. This further increases 
model utility by elucidating how changes in underlying ion 
channel maximum conductance values can lead to different 
functions in cardiac tissue. 

2.1 Cell Models 
The Luo Rudy (LR1) ventricular cell model [4], which was 
originally derived from the Beeler Reuter (BR) model [5], was 
selected for this modeling study because it reliably reproduces 
key features of experimental AP morphology. In addition, the 
system dynamics converge to steady state in a few beats, while 
subsequent models, such as the Luo Rudy dynamic (LRd) model 
[6], can take more than tens of beats to reach steady state. For 
the cell transformation aim, we used the Nygren atrial myocyte 
model [7]. Both the LR1 and Nygren models use Hodgkin 
Huxley type formulations for the ionic currents [8], where the 
cell is modeled as a circuit with parallel branches for each ion 
channel type.  

The original nominal maximum conductance values and 
descriptions for the LR1 and Nygren models are in [4] and [6], 
respectively. For the sensitivity analysis on the LR1 model, 
nominal values were shifted +/- 10% and restitution curves were 
plotted at steady state for each BCL, decrementing from 1200 to 
400 ms by 200 ms. For a cell, the restitution curve shows 
recovery to resting membrane voltage at differing BCLs. 

2.2 Genetic Algorithm 
As models become increasingly complex, it becomes ever more 
critical to understand parameters’ individual and coupled 
impact. Genetic algorithms traverse large portions of parameter 
space by using computational correlates of evolutionary 
processes. In this study an individual is a model instantiation, 
with the genotype as the array of maximum ionic conductances, 
and phenotype as the membrane potential. Competitive pressure 

was introduced by using tournament selection without 
replacement, with a tournament size of 2. Crossover probability 
of 0.9 and was done by simulated binary crossover with a 
genewise swap probability of 0.5 and polynomial order of 10. 
Mutation probability was set at 0.1 and done by polynomial 
method with order of 20 [9]. 

For the GA optimization, the objective function was pairs of 
action potentials from three pacing frequencies near the 
alternans onset frequency for the LR1 cardiac myocyte model. 
Thus, there are a total of six action potentials in the objective 
function, seen as the nominal phenotype in both Figure 2A and 
2B. Pacing near alternans onset was used to distinguish between 
individuals, as different genotypes lead to alternans resistance or 
susceptibility. The Genetic Algorithms Toolbox [9] from the 
University of Illinois Genetic Algorithms Laboratory was used 
for GA implementation, with a +/- 50% parameter variation 
range for each conductance parameter in the original nominal 
model. For the cell transformation aim a large +/- 2000% 
parameter range was allowed due to the different cell types. 
Equation 1 shows the form of the objective function. 

€ 

E =
2

NominalV (t)− IndividualV (t)( )
t=t0

tmax
∑  

(1) 

For the LR1 model, 20 individuals over 20 generations were 
sufficient for phenotype matching while for the Nygren model 
40 individuals over 60 generations were required. More 
individuals and generations were required for the Nygren model 
GA runs since the Nygren model is comparatively more 
complex than the LR1 model. Specifically, the Nygren model 
has more underlying parameters and detailed equations for 
intracellular ion handling which the LR1 model lacks. 

There is a natural parallelism in GAs where each fitness 
computation is independent of others within a generation. For 
each run of the GA we used OpenMP to distribute each 
individual’s phenotype and fitness calculation within a 
generation to different threads. Threads would join upon 
completion of a generation and then split again after selection, 
crossover, and mutation operations occurred. It is this 
parallelism that drew us to GAs, as a single individual 
evaluation is on the order of minutes. 
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Figure 2. Comparison of phenotypes with objective nominal 
phenotype. (A) is a weak phenotype from the first generation 
and (B) is a strong phenotype from the last generation of a 
GA run (see Figure 3A). The hatch marks delineate the three 
pairs of action potentials from different BCL pacing. 

2.3 Electrophysiology 
Myocytes were isolated from the left ventricle of adult (400-600 
gram) Hartley guinea pigs [10].  Whole cell voltage recordings 
were obtained using the ruptured patch clamp technique. Cells 
were bathed in Tyrode's solution, and all experiments were done 
at room temperature (~23 C). 2-4 Mohm pipettes were filled 
with solution containing the following (in mM): 113 KCl, 10 
NaCl, 5.5 Dextrose, 5 K2ATP, 0.5 MgCl2, 11 KOH, and 10 
HEPES (pH = 7.1). After formation of a gigaohm seal, suction 
was applied to the pipette interior to rupture the membrane 
patch. Membrane current and voltage was measured using an A-
M systems Model 2400 patch clamp amplifier. After waiting 5 
min for cell dialysis and current stabilization, APs were elicited 
with 1 ms square current pulses at 1.5 times threshold at a BCL 
of 500 ms until stable action potential were seen. 

3. RESULTS 
3.1 Sensitivity Analysis 
As seen in Figure 1, the LR1 model is least sensitive to changes 
in gNa and gKp and most sensitive to changes in gsi. Changes in 
gK and gK1 produce an intermediate impact on the restitution 
curve when compared to changes in the other conductances. The 
low sensitivity of gNa on restitution is understandable as that 
parameter is typically associated with AP upstroke velocity as 
opposed to APD. The AP plateau is mediated in large part by 
calcium, which is represented by gsi. 
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Figure 3. Genetic algorithm progression. (A) Original 
population of individuals evolving over specified 
generations. Colorbar denotes error value for individuals. 
(B) Generation average error best individual error.  

3.2 Model Fit 
With experimental data the actual genotype is not known, and so 
to test our GA approach we started with random LR1 model 
genotypes in search of the known nominal model. Figure 2 
shows examples of a weak phenotype (Figure 2A) and a strong 
phenotype (Figure 2B) taken from individuals in the first and 
last generations of a LR1 GA run (Figure 3A), having high and 
low error, respectively. With our objective including alternans, a 
weak phenotype could have a different electrical abnormality or 
even normal activity. As the GA progressed, the best individual 
and average error of the population decreased (Figure 3B).  

3.3 Cell Transformation 
In [11], it was shown that an AP with different morphology 
could be transformed to another AP from the same species and 
same heart region. Here we show that with a GA, it is possible 
to do a fit across species and heart region. Figure 4 shows the 
phenotype transformation, and required genotype changes, to go 
from the human Nygren atrial cell model to that of matching 
experimental guinea pig ventricular data. The different heart 
chambers have different functions, with the atria responsible for 
pumping blood to the ventricles, and the ventricles responsible 
for pumping blood to the body. Considering these different 
roles, the fit in Figure 4A is not as close as in Figure 2B, likely 
due to irreconcilable differences in the model equations outside 
of conductances, perhaps showing species specific differences. 
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Figure 4. Transformation of atrial cell model to match 
ventricular cell experimental data. (A) Overlay of 
experimental, nominal, and GA transformed model. The 
arrow denotes the transformation of the Nygren model to 
that of one fitting experimental data from a different heart 
region. (B) Bar graph shows change of each Nygren atrial 
conductance parameter to fit phenotype of ventricular cell, 
relative to nominal values.  

4. DISCUSSION 
Every cell has a different genotype that needs to be in a 
physiological range for the cell to be viable and functional. An 
individual model instantiation’s genotype is formalized as its 
maximum ionic conductance values. Single parameter 
perturbations in the sensitivity analysis led to different 
phenotypes, with different conductances having large or small 
effects on the restitution curve. Those model parameters that are 
denoted as model-sensitive can be prioritized for optimization, 
while those denoted as model-insensitive can be revisited in the 
model formulation. In addition, sensitivity to a parameter can 
have dosage implications in drug treatments, as some ion 
channels contribute little to the target of the treatment. 

The multiple parameter perturbations conducted via the GA led 
to the successful fit of an objective with alternans, a precursor to 
some cardiac arrhythmia, as well as a fit for a model 

transformation. Cross-species cell transformations are important 
because different species offer different advantages and 
disadvantages for arrhythmia research. For example, guinea pigs 
are used as a model for human disease, but with mice there is a 
wealth of genetic techniques available. In this study, we show 
that a cross-species as well as cross-heart region transformation 
is possible using a GA. Taken together, the GA is a powerful 
tool for the study of cardiac electrophysiology. 
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