
Generation of Tests for Programming Challenge Tasks
Using Evolution Algorithms

Maxim Buzdalov
Saint-Petersburg State University of IT, Mechanics and Optics

197101, 49 Kronverkskiy prosp.
Saint-Petersburg, Russia

mbuzdalov@gmail.com

ABSTRACT
In this paper, an automated method for generation of tests in
order to detect inefficient (slow) solutions for programming
challenge tasks is proposed. The method is based on genetic
algorithms.

The proposed method was applied to a task from the In-
ternet problem archive — the Timus Online Judge. For this
problem, none of the existed solutions passed the generated
set of tests.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Data generators

General Terms
Algorithms, Experimentation, Performance

Keywords
Programming challenges, genetic algorithms, testing

1. INTRODUCTION
Testing of software is a difficult problem. In a classic

book [12], it is stated that testing takes 50% of time and
more than 50% of cost spent on development of a piece of
software. The following properties are shared by most of
enterprise software from the point of view of testing:

• in majority of cases, the logic of the program is tested;

• suboptimal answers are often acceptable;

• the program to be tested either exists or is to be writ-
ten by the same developer who writes tests [8].

In most of the popular types of programming challenges [1,
2, 5], the correctness of solutions for the programming tasks
is checked by running them on a number of pre-written tests
(input files) under time, memory and other limits, and then

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0690-4/11/07 ...$10.00.

checking the answer (the output file). When successfully
compiled and running on a test, a solution may end up with
one of the following outcomes [3, 14]:

• Time Limit Exceeded (TL) — the solution exceeded
the time limit set for the problem;

• Memory Limit Exceeded (ML) — the solution exceeded
the memory limit set for the problem;

• Runtime Error (RE) — the solution terminated un-
expectedly, most probably because of some runtime
errors (division by zero, array index out of bounds) or
uncaught exceptions;

• Presentation Error (PE) — the output file does not
match the required format;

• Wrong Answer (WA) — the answer is incorrect;

• Accepted (AC) — the answer is correct.

Creation of tests for programming tasks differs from the
enterprise software testing in a number of points. First,
the logic of a solution is typically much simpler, so almost
every test covers all the paths. Second, partially correct
solutions, as well as solutions giving suboptimal answers are
inacceptable or are ranked lower than the fully correct ones.
Third, the programs to be tested do not exist yet (except for
ones written by jury members), as tests are typically made
prior to the competition.

The quality of the test sets for the programming tasks
mostly determines the quality of the challenge itself. In
other words, weak tests allow a number of incorrect solutions
to pass the tests, so skilled participants who are trained to
invent correct solutions are given less chance to win than
unskilled ones who write incorrect solutions in the hope it
will be accepted.

One of the ways to make the situation better is to make
the process of test creation more automated. In this work,
genetic algorithms are used to generate tests that challenge
the inefficient solutions. The use of evolution algorithms is
inspired by works on unit test generation [7, 15].

2. THE APPROACH
The approach being described is designed for generation of

tests against inefficient solutions for those kinds of program-
ming tasks where the usual ways of test generation produce
weak tests (i.e., tests that are likely to be passed by some
wrong or inefficient solutions). Such tasks often correspond

763

to the computer science problems that are known to have a
number of heuristics that do not improve the worst-case per-
formance but improve the average-case performance, thus
making it very hard to find the worst-case tests.

One may take the knapsack problem as an example. This
problem is known to be NP-complete. However, there are
many algorithms that, on random data, perform as fast as
O(N) where N is the number of items [13]. The problem of
finding hard test data is examined in [9] but the approach
described there fails when the task is to find a hard test with
certain small limits on weights and capacities of items.

The approach consists of the following steps:

• choosing a representation of a test as an individual of
the genetic algorithm;

• designing genetic operators for the representation of
a test;

• implementing a solution to generate tests against;

• designing a fitness function for a test, based on the
chosen solution;

• evolving a number of tests using the genetic algorithm,
the test representation and the solution-based fitness
function.

2.1 Test Representation
The choice of a test representation is determined by the

data included in the test, and the constraints on the test
data, described in the task statement. The representation
should ensure that, for a randomly-generated representation,
the rate of correct tests (i.e., tests that meet the constraints)
is reasonably high. In the example of a task below the con-
crete example of the representations is given.

2.2 Model Solutions
For the approach to work, there must be some solutions

written with the purpose of generating tests against. This is
not a new idea, as, in the“traditional”workflow of preparing
of problems, some inefficient solutions are written anyway to
demonstrate that the test set filters all of them. However, in
this type of workflow the solutions which are considered to
be inefficient by the described approach, often are mistak-
enly counted as “correct” ones. If it is possible to add tests
after the challenge starts, then the accepted solutions may
be used for generation of tests as well.

2.3 Fitness Functions
There is no universal fitness function which is applicable

to every instance of test generation problem. Consider the
following fitness function: the number of instructions exe-
cuted while the solution is running. Using it, the genetic
algorithm may fail to find a good test if the size of such test
is relatively small, and running time of the solution on ran-
dom test is determined by the size of a test. It is the case
of the knapsack problem [13, 9].

The way adopted in this paper is to use a fitness function
specific to the problem and the particular solution under
test. It is possible to develop more fine-grained fitness func-
tions, which allow to breed better tests, or same quality tests
in less time.

0 0 0 010 45 91 17 45

55 91 62

10 45 91 17 45

Havens:

Ships:

Figure 1: A test encoded by a sequence of integers

3. EXAMPLE: “SHIPS. VERSION 2”
In this section, we consider a programming task named

“Ships. Version 2”, which is located at Timus Online Judge
[6] under the number 1394 [4].

3.1 Task Statement
Given N ships, each having a length of si, and M havens,

each having a length of hj , one needs to assign the ships to
the havens, such that the total length of all ships assigned to
the j-th haven does not exceed hj . The constraints follow:

• N ≤ 99, 2 ≤ M ≤ 9, 1 ≤ si ≤ 100;

• P
si =

P
hj ;

• the correct assignment always exists;

• time limit: 1 second;

• memory limit: 64 megabytes.

The task is clearly seen to have relationship with the mul-
tiknapsack problem [13]. This problem is known to be NP-
hard in the strong sense: there are no known solutions that
have running time bounded by a polynomial of the con-
straints. One may expect that the programming task pre-
sented above should be unsolvable. Nevertheless, there were
260 accepted solutions at the time of June, 15, 2009, which
means that the test set was quite weak.

3.2 Test Encoding
To overcome the difficulties imposed by both test con-

straints and the genetic algorithms, a special encoding algo-
rithm was designed. First, a test is encoded by a sequence
of integers, which helps to fit the majority of constraints,
including the hardest one, by design. Second, the sequence
is encoded by a tree-shaped generator, which helps larger
blocks of sequence elements to survive.

3.2.1 Test from a Sequence
The biggest problem with the test encoding is that there

is a strong constraint — the correct assignment of ships
to havens should always exist. Checking this constraint is
equivalent to solving the whole problem. If using the direct
encoding, the ratio of correct tests among all possible tests
will be close to zero.

To overcome this, a special encoding was developed. The
test is encoded by a sequence of integer numbers in the range
from 0 to 100, where positive numbers denote the ships,
and the contiguous intervals of positive numbers denote the
havens (see Fig. 1). The sequence may have an arbitrary
length. Sequences are not generated directly, but are pro-
duced from the presentation described below.

One can see that, if the order of items is not taken into ac-
count, every possible test can be encoded as a sequence. The

764

0

0 0

0

�

�

�
�

10

45 91

17 45

Figure 2: A tree-shaped generator

rate of incorrect tests generated from a random sequence is
relatively small. The integer sequence is used as an inter-
mediate representation between a test and an individual.

3.2.2 Sequence from a Tree-Shaped Generator
To allow for grouping of consecutive sequence elements,

tree-shaped generators are introduced. A tree-shaped gen-
erator is a rooted tree. Each leaf of the tree contains a single
sequence element. Each internal node produces a sequence
that is a concatenation of sequences produced by its chil-
dren. The sequence generated by the generator as a whole
is produced by its root (see Fig. 2).

The depth of trees is unlimited. A generator is created
using a stack of tree nodes with the following algorithm. In
each of K iterations, one of two steps is performed:

• With the probability of 3/4, a leaf containing a ran-
domly generated integer is pushed onto the stack. The
integer is set to 0 with the probability of 1/7, and the
positive values are chosen equiprobably.

• With the probability of 1/4, a random number of nodes
is popped from the stack, then a new node which has
these nodes as children is created and pushed onto the
stack.

With K = 108, the average depth of randomly created gen-
erators is approximately equal to 12. K is selected in such a
way that the tests created from generators are nearly max-
imal in size. It is shown below that the optimal size for a
particular solution is effectively determined by the genetic
algorithm.

The idea of tree-shaped generators is largely inspired by
the genetic programming [10]. The tree-shaped generator is
used as an individual for the genetic algorithm.

3.2.3 Crossover and Mutation Operators
The genetic operators on tree-shaped generators resemble

the corresponding operators on parse trees. The crossover
operator exchanges randomly selected subtrees of the parent
trees. The mutation operator replaces a randomly selected
subtree with a randomly generated tree of the same height.

3.3 Fitness Functions
As explained in Section 2.3, one needs to design a fitness

function, considering the solution under the testing. For
some typical solutions, the choice of the fitness function is
explained below.

• The solution consists of a recursive function, which
calls itself with various parameters. For those solu-
tions, the fitness is the number of calls of such a func-
tion. If there are more than one such function, some
or all of them are counted.

• The solution permutes the input data in random ways
and tries to assign ships to havens in some greedy or
dynamic programming based way. If the arrangement
fails, one more permutation is tested, and so on. In
this case, the fitness is the number of permutations
performed until the answer is found.

• Some of the solutions consist of several parts, which
are given some time to execute. If some part finds
the answer, the execution is terminated, otherwise, the
next part tries to find the answer. For such solutions,
the fitness is a vector of fitness values for each of the
part. These vectors are comparable lexicographically.
To cover all the variations of such solutions, the time
intervals for each part are set to the time limit, so, in
the case of successful test generation, no variation can
pass the test.

• For solutions that do not fall into the categories above,
a special approach, depending on the kind of solution,
is developed. Once this is done, an algorithm which
tries to apply the fitness function to an arbitraty solu-
tion can be added to the framework for future use.

• If the solution gives wrong answer for the given test,
the fitness value is set to the best possible value. This
is because the main aim of test generation is to find
a test that makes the solution fail. Using the ideas
described in this paper, one can get the wrong answer
verdict either by accident or by using a special fitness
function. However, this verdict shows that the solution
is wrong, so the aim is achieved and the test generation
can be stopped.

For the solutions that use a random number generator,
the random seed was fixed, and the time limit was increased.
Tests generated this way were able to successfully fight the
solutions of that type with non-fixed random seeds with a
probability very close to 1.0.

3.4 Evolution Algorithm
In this research, little attention was paid for the optimality

of the genetic algorithm scheme. The scheme described be-
low was designed by several trial-and-error attempts. More
work on this topic is left for the future.

In the scheme used in the research, the number of indi-
viduals in the generation S is selected between 200 and 500.
To create next generation, the following steps are made.

• The number of new individuals generated is set to S.

• For every pair of new individuals to be generated, two
parents are selected independently using a tournament
selection. To perform the selection, 8 individuals are
chosen independently at random. In each tournament,
the probability for the fittest individual to win is 0.9.

• The best S individuals of parents, children and S/4
random individuals proceed to the next generation.

The presented algorithm contains a strong elitist selection,
so it is prone to stagnation. When the stagnation occurs,
that is, in 50 generations there is no fitness increase, the
algorithm enters a new stage with all-random generation.
The best individual from the killed generation is retained in
a special individual bank for the future. When the next stage

765

of the algorithm reaches the level of that individual in fitness,
the saved individual is injected in the new generation. The
recombination of old and new optimums sometimes result in
fitness higher in several orders.

3.5 Experiment and Results
At the time of the experiment, there were 260 accepted so-

lutions. The process of test generation proceeded as follows,
while there were accepted solutions on the test server:

• Among accepted solutions, the slowest one is chosen.

• One to three tests are generated against this solution.
Generation of each test takes from 1 to 24 hours.

• These tests are added to the server, and all accepted
solutions are rejudged.

In total, 25 solutions were used to generate tests. From
the new tests, the “best” 11 tests were selected (a test T
is considered to be “best”, if no other test beats a superset
of solutions beaten by T). These tests were added to the
testing server under numbers from 48 to 58.

The majority of tests have the similar sizes: the number
of ships is from 30 to 35, and the number of havens is 9. One
may notice that the number of ships is significantly smaller
than the limit. For solutions that are structurally different
from the majority, the tests also differ. For example, one of
the tests against some “special” solution has 84 ships and 6
havens.

In most of the trees representing the best tests, there are
several similar subtrees, which have the size of order of 10.
These subtrees are either equal or differ in small number of
leaves. When comparing the best individuals from the ad-
jacent generations, it can be seen that these subtrees are
copied by the crossover operating on similar individuals.
This effect is achieved using the tree representation at no
cost. To get a similar effect using string-based individuals,
one needs to use a two-point crossover, but in this case, there
will be no grouping of consecutive sequence elements.

At the precise moment, in a year and a half after the
generated tests were uploaded to the server, there are only
nine accepted solutions, all of them submitted after the time
of the test upload. Compared to 260 previously accepted
ones, it is a very small number, which demonstrates the
high quality of generated tests.

4. CONCLUSIONS
The approach of test generation for programming chal-

lenge tasks using genetic algorithms was introduced. It is
designed to generate tests against inefficient solutions. The
approach was demonstrated on the example of a program-
ming task from the Timus Online Judge. The experiment
showed the efficiency of the presented approach: the newly
generated tests defeated all the solutions accepted by the
time of experiment.

5. FUTURE WORK

5.1 Tuning the Search Algorithm
The scheme of the genetic algorithm presented in the pa-

per is definitely not an optimal one. The possible ways of
improve the situation include:

• altering the selection schemes;

• tuning the parameters of the algorithm itself and of
the genetic operators;

• automated selection of the most efficient genetic oper-
ator or even the individual representation.

Genetic algorithms are not the only evolutionary algo-
rithms that work in this area. For simpler individuals, evo-
lution strategies are expected to perform equally well or even
better [11].

5.2 Other Classes of Incorrect Solutions
The fitness functions described in the paper are designed

to find test for solutions inefficient in terms of execution
time. However, the similar approach could be used to defeat
the solutions that use too much memory, even if they fit the
time limit.

To generate tests against the solutions which are able to
give wrong answers, another approach, similar to the one
in [7, 15], should be developed. However, due to specifics of
the programming tasks, the standard code coverage metrics,
such as instruction coverage or branch coverage, may show
poor results (i.e., the code is covered completely, but not
all the possible cases are tested). New or more advanced
coverage metrics should be invented for this to work.

6. REFERENCES
[1] ACM International Collegiate Programming Contest.

http://cm.baylor.edu/welcome.icpc.

[2] International Olympiad in Informatics.
http://www.ioinformatics.org.

[3] NEERC Contest Rules.
http://neerc.ifmo.ru/information/contest-rules.html.

[4] Problem “Ships. Version 2”.
http://acm.timus.ru/problem.aspx?num=1394.

[5] Programming Contests at TopCoder.
http://www.topcoder.com/tc.

[6] Timus Online Judge. The Problem Archive with
Online Judge System. http://acm.timus.ru.

[7] J. T. Alander, T. Mantere, and P. Turunen. Genetic
Algorithm Based Software Testing. In Artificial
Neural Nets and Genetic Algorithms, pages 325–328,
Wien, Austria, 1998. Springer-Verlag.

[8] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley Professional, 1999.

[9] V. Chvatal. Hard Knapsack Problems. Operations
Research, 28(6):1402–1411, 1980.

[10] J. R. Koza. Genetic programming: on the
programming of computers by means of natural
selection. MIT Press, Cambridge, MA, USA, 1992.

[11] M. Mitchell. An Introduction to Genetic Algorithms.
MIT Press, Cambridge, MA, 1996.

[12] G. J. Myers. The Art of Software Testing, Second
Edition. John Wiley & Sons, Inc., 2004.

[13] D. Pisinger. Algorithms for Knapsack Problems. PhD
thesis, University of Copenhagen, February 1995.

[14] S. S. Skiena and M. A. Revilla. Programming
Challenges: The Programming Contest Training
Manual. Springer Verlag, New York, 2003.

[15] P. Tonella. Evolutionary testing of classes. In ISSTA,
pages 119–128, 2004.

766

