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ABSTRACT
This paper presents research on discrete dynamics of cellular
machines, their specification and interpretation. It gives an
overview of the fundamental issues related to the classification of
Cellular Automata (CA) classes. In particular, the possible
locations of various CA capable to achieve different degrees of
complex behaviors are described. This work is mainly focused on
the correlation between CA behavior and cellular regulative
properties. A possible minimalistic experimental setup is
presented, together with some preliminary results and ideas that
can be investigated in future work.  

Categories and Subject Descriptors
I.2.m [Artificial Intelligence]: [Miscellaneous] 

General Terms
Design, Experimentation
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1. INTRODUCTION
For the past 50 years computers have been based on the so called
von Neumann architecture, where one complex processor
sequentially performs a single task at each time-step. Recently,
new computational paradigms have been explored and
investigated. These new systems are based on a myriad of small
and unreliable components called cells. Even if a single cell itself
can do very little, the emergent behavior of the system as a whole
is capable of complex dynamics. In cellular computing [12] each
cell can only communicate with a few other cells, most or all of
which are physically close by (neighbors). One implication of this
principle is that none of the cells has a global view of the entire
system, i.e., there is no central controller. Such systems can be
modeled using specific computational machines called cellular
automata. The metaphor with biology can be exploited on cellular
systems because the physical structure is similar to biological
multi-cellular organisms. 

The main initial topic of this research is to investigate the
complexity of cellular machines and their behavior, in relation
with the development process. This work includes identification
of favorable developmental properties, e.g. self–replication, self-
adaptation, self-repair, toward machines capable of complex
computation. 

Section 2 gives motivations and background information. In
Section 3 the main objectives are presented and in Section 4
Wolfram’s CA classes are described. In Section 5, Langton’s
work on the computation at the Edge of Chaos is introduced.
Section 6 discusses the connection between previous works and
ongoing research. A possible minimalistic experimental setup for
the investigation of correlation between CA behavior and cellular
regulative properties is introduced in Section 7. Section 8 shows
some preliminary results and finally, Section 9 concludes the
paper.

2. MOTIVATION AND BACKGROUND
The work is going to be included in current projects of using
biological inspiration from evolution and development towards
hardware capable of unconventional computation. The approach
in this project is to use a combination of artificial development
and evolutionary algorithms (EvoDevo) [5]. In this work, the
computational architectures targeted are architectures that can be
viewed as sparsely connected networks, e.g. boolean networks or
cellular automata. The computational output of such architectures
can be seen as a discrete dynamic behaviour.

Even though such architectures have vast computational power,
due to the massive parallel operation, the specification of input
data and the interpretation of the dynamics of the system (the
output) are not trivial. This project aims to gain knowledge of
how specification of input data and the interpretation of the
dynamics can be improved as to be able to exploit these
architectures in real world problems. This involves work in the
field of artificial development, unconventional computation and
possible utilization of existing hardware technology or
computational models of cellular machines.

Artificial developmental systems are analyzed and evaluated by
viewing the system as a discrete dynamic system and the
development process is treated as series of discrete events, each
representing a point in time on the developmental path from
zygote to multi-cellular organism. If the parallel nature and
limited local communication of a cellular system is considered in
relation with the discrete time update of the system, a
developmental system (e.g. a CA), can be approached as a
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network of sparsely connected units (cells). Such networks can be
modelled and analyzed using the same methods as for Boolean
Networks and Random Boolean Networks (RBN) [16]. This
opens for the possibility to generate and visualize attractor basins
and the trajectories from initial state to attractors, which may
represent the system behaviour.

Those alternative computation paradigms such as cellular
computation may offer massive computation power. However, the
potential is hard to exploit. Logical design of the hardware and
lack of programming methods makes it difficult to unleash the
potential computation power. As an alternative to today’s top-
down design approach an adaptive approach e.g. an Evolutionary
Algorithm (EA) [10], show promising results as a design tool for
such systems. However, EAs alone lack the scalability required to
solve the task of designing the hardware and setup the running
conditions required for realistic computation problems. One
solution to increase the level of design complexity of EAs is to
take inspiration from nature’s way of handling complexity.
Applying biologically inspired design methods, such as
evolutionary algorithms and artificial development, as a design
tool for hardware capable of complex computation is not a trivial
task. The approach is relatively new and there is little knowledge
of how to design the biologically inspired methods toward
functional hardware. However, the results found by applying
biologically inspired design methods [17] are promising and it is
our belief that pursuing this approach will lead to specialized
hardware capable of effective computation.

3. OBJECTIVES
The main high level objective is to exploit Artificial Development
to the creation of basic computational elements that fit in an
unconventional computation paradigm. This topic has opened
several research directions which aim at the following research
questions:

- Which theoretical and experimental approaches can be used to
find methods for the specification of input data and
interpretation of the discrete dynamics of cellular machines?

- How to use those methods on problems where modeling on
cellular machines is advantageous? Problems of interests are in
the domain of complex systems, e.g. economical models, clima
models or models of gene regulation networks.

- Which is the correlation between developmental and structural
complexity of cellular machines? Which is the relation between
complexity and the behavior of the system? Investigation,
evaluation and comparison of such properties. 

- Which is the impact of developmental properties on EvoDevo
(Evolution and Development) machines capable of complex
computational behavior?

4. CA CLASSES
The starting point is an in depth study of CA behaviors and
classifications. John von Neumann [9] studied the first cellular
automaton in the 1940s, basing his research also on some studies
done by Stanislaw Ulam [8]. At that time, the research on cellular
automata was performed through analysis of variations produced
by a single automaton [11]. In the 1980s Stephen Wolfram
changed this approach. He showed that one-dimensional cellular

automata could be sufficient to investigate the rules’ behavior.
Instead of studying single rules, he divided and enumerated
subclasses of CA rules in order to group the rules producing
similar behavior and study different classes depending on the
pattern that the rules were able to generate [2]. Wolfram found
out that CA can be grouped in four classes, depending on the type
of behavior they produce. In practice, with finite lattices, there is
only a finite number of possible configurations and all rules lead
to a periodic behavior. However, in theory, the lattice is supposed
to be infinite. 

4.1 Class 1
Almost all initial configurations relax after a transient period to
the same fixed configuration. In this class, the outcome of the
evolution is determined with probability 1 and it is not dependent
on the initial state. In other words, the automata in this class die
after one or few evolution steps and the process is not reversible
because all the previous information is lost. No patterns, or very
few patterns, are produced in the first evolution steps and,
afterwards, the CA reaches homogeneous state every time.

4.2 Class 2
Almost all initial configurations relax after a transient period to
some fixed point or some temporarily periodic cycle of
configurations, which is dependent on the initial configuration.
Some parts of the initial configuration are filtered out and others
are propagated forever. The automata in this class will look like
vertical bars or stair steps. The process is not reversible because
information is partially lost during the evolution.

4.3 Class 3
Almost all initial configurations relax after a transient period to
chaotic behavior. The evolution process is completely reversible
since the previous state can be predicted analyzing the current
state. This class of behaviors is chaotic but not random and the
produced data are not noise. 

4.4 Class 4
Some initial configurations result in complex localized structures
that are sometimes long-lived. The information is propagated by
the automata at variable speed. The process is non-reversible
because the current site values have been influenced by more than
one previous configuration [14]. This is the only class with non-
trivial automata, which can produce complex behaviors instead of
fixed dynamics (trivial by definition) or chaotic dynamics (chaotic
behavior is considered to be trivial because it is not random and
thereby it is completely reversible). Wolfram [2] proposed that the
automata in the class 4 are capable of universal computation.
However class 4 is not rigorously defined and thus this hypothesis
seems impossible to verify [13] (Cook [18] proved that one
dimensional CA rule 110 is capable of universal computation) .

5. COMPUTATION AT THE EDGE OF
CHAOS
Langton tried to find a relation between the CA behavior and a
parameter λ [1]. He observed that the basic functions required for
computation (transmission, storage and modification of
information) are achieved in the vicinity of phase transitions
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between ordered and disordered dynamics (edge of chaos). He
also guessed the location of Wolfram classes in the λ space.
Classes 1 and 2 constitute the ordered phase and class 3
constitutes the disordered phase. Class 4 is located somewhere
between these two phases of dynamical behavior. 

It turned out that it is more likely to find rules capable of complex
computation in a region where the value of a parameter (λ) is
critical [1]. λ is defined as the fraction of “non-quiescent” states in
the rule-table used for the development of the CA. When λ is
equal to zero all the rules lead to a quiescent state and when λ = 1-
1/k (k is the number of different possible states of a cell) the rule-
table is the most heterogeneous. For example, considering a 2D
CA with 3 cell types (empty cell, cell of type A and cell of type
B), if all the rules constructed with all the possible neighborhood
configurations lead to the empty cell, the value of λ is 0. On the
other hand, if only 1/3 of the rules generate the empty cell, the
value of lambda is 1-1/3=2/3. Incrementing λ from 0 to 1-1/k, it is
possible to observe all the types of CA behavior described by
Wolfram, crossing phase transitions and going from ordered to
chaotic behavior. For certain λ critical values the CA tend to show
complex and long-lived patterns. Langton [1] claimed also that
class 4 is located somewhere around this critical value of λ, at the
Edge of Chaos. 

Studies on entropy [1], as a measure of the information carried by
each cell during the CA development, and mutual information
between the cell and itself at the next time step, support the
hypothesis that for λ values in the proximity of phase transitions,
it is more likely to have well balanced conditions to support
computation. For example, information storage involves low
entropy and, on the other hand, information transmission requires
increasing entropy. If a system needs to do both in order to
perform computation, there must be a tradeoff between levels of
entropy. Again this happens in the proximity of phase transitions.

6. DISCUSSION
The previous work regarding the edge of chaos [1] [3] [4], may
not be conclusive. More investigation is required in order to
understand the relation between computation performed by CA
and different λ values, the relationship between complexity and
computation, the intrinsic properties of the development process
of CAs. So far, it seems that there is a correlation between phase
transitions in the CA regime and the ability to perform
computation.

A developmental system is a system in which an organism can
develop (e.g. grow) from a zygote to a multicellular organism
(phenotype) according to specific local rules, represented by a
genome (or genotype), and the interactions with the environment.
A CA can be considered as a developing organism, where the
developmental process is itself a computation. The genome
specifications and the gene regulation information control the
cells’ growth and differentiation. The behavior of the CA is
represented by the emergent phenotype, which is subject to size
and shape modifications, according to the cellular changes along
the developmental process. Such dynamic developmental systems
can show adaptation, self-modification or plasticity properties. In
the next chapter we present a possible minimalistic experimental
setup.

7. POSSIBLE EXPERIMENTAL SETUP
Our current work consists on an investigation with a minimalistic
developmental model based on a two dimensional cellular
automata. The number of cell types is set to three instead of two in
order to keep the property of multicellularity (two types of cells
plus the empty or dead cell). A single cell is placed in the centre
of the development grid and it will develop using a developmental
table based on Von Neumann’s neighborhood. All the possible
regulatory input combinations are explicitly represented in a
development table which consists of 243 (35) configurations (with
three types of cells and a neighborhood of size five, the number of
possible cellular states is 243). The table is generated using a
“random table method” [1]. For each λ value from 0 to 1 (and
intervals of 0.01), the relative developmental table is generated as
follows: with probability 1-λ, the cell type at the next
developmental step is quiescent; with probability λ, the cell type
at the next developmental step is a generated by a uniform random
distribution among the other two cell types. This method is
computationally efficient compared to the “table walk through
method” [1] but, on the other hand, it does not assure that the
required value of λ is precisely reflected in the development table.
However, it does guarantee enough accuracy. To ensure that cells
will not materialize where there are no other cells around, a
restriction has been set: if all the neighbors of a quiescent cell are
quiescent, the cell will be quiescent also in the following
development step. A more detailed description of the development
model is given in [15].

With this configuration it is possible to investigate the
developmental process from a zygote to a multicellular organism
with development rules that cover a wide spectrum of the λ space.
Depending on the λ value, it may be possible to find a correlation
between properties of the developmental mapping and the
behavior of the automata in terms of developmental complexity,
structural complexity, CA attractor length, CA trajectory length,
different transient phases. 

8. PRELIMINARY RESULTS
The first experiment has been performed on a 3 by 3 CA. With 9
cells, the maximum number of possible states is 39=19 683. We
immediately noticed that every cell has a development process
which is completely dependent on the neighborhood configuration
of each other. In other words, many neighbors are overlapping
and the development process is annihilated by this superimposing,
there is not enough space for a “free” development. This situation
is shown in Figure 1a, where the less overlapping neighborhoods
have 2 cells out of 5 in common (in green, 1/2). Moreover, there
is not enough space for structure growth and signal propagation.

Figure 1. Representation of overlapping neighborhood with
different 2D CA sizes. Cells 1 and 2 are marked with a
cross. Neighbors are marked with 1 and 2 respectively. 
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The same mechanism is shown in Figure 1b, 1c and 1d, for a 4 by
4, 5 by 5 and 6 by 6 CA, respectively. In this last case, several
cells have no overlapping neighborhood. 

In [15] we have presented the results for 4 by 4 and 5 by 5 CA. At
the moment, we are running experiments using 6 by 6 arrays.
Unfortunately the experiments are not finalized. However, early
results show a correlation between genomic composition and
developmental properties, e.g. trajectory, attractor or transient
length. In Figure 2, we illustrate some early results on a 3 by 3
cellular array. It is possible to identify that average trajectory and
attractor length have higher values in the proximity of a “critical”
value of λ region, around 0.66. As we have said earlier, this result
is slightly reduced and mitigated by the overlapping scenario.
Anyway, there is a clear correlation between the value of λ and
the behavior of the resulting organism, observed as length of the
trajectory and the attractor. It might be possible to find specific
characteristics or properties of the genotype in order to predict
how the phenotype will develop. For more exhaustive and
detailed results, please refer to [15].

Figure 2. Results of 3x3 organism, average trajectory and
attractor length plotted as function of Lambda.

9. CONCLUSIONS
In this paper, Wolfram’s CA behavior classification is described
together with the “edge of chaos”, a region in the rule space where
there is a transition between ordered and chaotic regimes. An
experimental setup for a minimalistic developmental system that
can be exploited to investigate correlations between CA behaviors
and cellular regulative properties is presented.

Early results show that it is possible to measure properties of the
genome composition (here measured with λ parameter) as an
indicator of how resulting organism will develop. In many studies
regarding CA and in particular their development process and the
produced computation, artificial organisms have shown
remarkable abilities of self-repair, self-regulation [6] and
phenotypic plasticity [7] [19].

Our guess is that many of the CA rules which lead to these
behaviors are in the frozen or ordered region (Wolfram’s classes 1
or 2) and not in the “edge of chaos”. 
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