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ABSTRACT

Developing efficient algorithms for dynamic constrained multi-
objective optimization problems (DCMOPs) is very chal-
lenging. This paper describes an attraction based particle
swarm optimization (PSO) algorithm with sphere search for
such problems. A dynamic constrained multi-objective op-
timization problem is transformed into a series of static con-
strained multi-objective optimization problems by dividing
the time period into several equal intervals. To speed up op-
timization process and reuse the information of Pareto op-
timal solutions obtained from previous time, a new method
based on sphere search is proposed to generate the initial
swarm for the next time interval. To deal with the trans-
formed problem effectively, a new particle comparison strat-
egy is proposed for handling constraints in the problem. A
local search operator based on the concept of attraction is
introduced for finding good search directions of the particles.
The results show that the proposed algorithm can effectively
track the varying Pareto fronts with time.
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1. INTRODUCTION
Many real world optimization problems exist in dynamic

environments. A dynamic constrained multi-objective opti-
mization problem can be described as follows:






min f(x, t) = {f1(x, t), f2(x, t), ..., fm(x, t)}
s. t. gj(x, t) ≤ 0, j = 1, · · · , p

x ∈ [L, U ]

(1)
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where t ∈ [a, b] is time variable, x = (x1, x2, ...xn) is the
decision vector, gj(x, t)(j = 1, 2, ..., p) are inequality con-
straints. All of these constraints depend on time variable
t. [L, U ] = {x = (x1, x2, ...xn)|li ≤ xi ≤ ui, i = 1, 2, ..., n}
is the search space. Constraint violation at time t is de-
fined as Φ(x, t) =

∑p

j=1 max(0, gj(x, t)). A vector µ =

(µ1, µ2, ...µn) is said to dominate a vector ν = (ν1, ν2, ...νn)
(denoted as µ ≺ ν) if: ∀i ∈ {1, 2, ...m}, fi(µ) ≤ fi(ν)

∧∃j ∈
{1, 2, ...m}, fj(µ) < fj(ν). A solution x is called a Pareto op-
timal solution for problem (1) at a fixed time t if Φ(x, t) = 0
and ∼ ∃x̃ ∈ [L, U ] such that Φ(x̃, t) = 0 and x̃ ≺ x.

A few studies have been made to develop effective evo-
lutionary computation algorithms for solving dynamic con-
strained multi-objective optimization (DCMOPs), such as
dynamic NSGA-II [1] and dynamic MOPSO [2]. When PSO
is used to solve the dynamic problems, there are several is-
sues. First, PSO should be able to track the varying Pareto
fronts rather than a repeated start of optimization process.
Second, an effective constraint handling technique needs to
be developed to avoid premature convergence. Third, a local
search is needed to make the convergence faster.

To address the above issues, the goal of the paper is to
develop a new PSO method for dynamic constrained multi-
objective optimization when the environment continuously
changes with time. We expect the proposed algorithm to
effectively track the varying Pareto fronts and the Pareto
optimal solutions obtained in each time period to be widely
distributed along the true Pareto front.

2. SPHERE SEARCH METHOD
When objective functions and constraints change with

time continuously, the DCMOPs can be approximated by a
series of static multi-objective optimization problems (SMOPs)
by taking the time interval fixed. To speed up the optimiza-
tion process, a sphere search method is proposed to generate
the swarm of the next time interval.

Algorithm 2.1 (Sphere search method)
Step 1. Define spheres

• Initial radius for sphere r:
√
2

• Centroid of a sphere: x̃ = (x̃1, ...x̃n) (randomly
choose 11 points from the set of the Pareto opti-
mal solutions as the centroids).

• Number of samples in each sphere: S = 5
These parameter values are chosen based on an empir-
ical search via initial experiments.

Step 2. Compute S uniformly distributed points in each
sphere by using Eq.2. xj = (xj1, xj2, ...xjn), j ∈ {1, 2, ...S}
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denotes one of these points. αjn−1 ranges in [0, 2π],
αji ∈ [0, π], i = 1, 2, ...n− 2, j = 1, ..., S.

xj1 = x̃1 + rns cos(αj1)
xj2 = x̃2 + rns sin(αj1) cos(αj2)
xj3 = x̃3 + rns sin(αj1) sin(αj2) cos(αj3)
...
xjn−1 = x̃n−1 + rns sin(αj1)... sin(αjn−2) cos(αjn−1)
xjn = x̃n + rns sin(αj1)... sin(αjn−2) sin(αjn−1)
j = 1, 2, ...S

(2)

Totally, 55 points are generated based on sphere search.
If the size of the swarm of the next time is 100, then the
55 solutions produced by the sphere search can be seen as
a part of the swarm, and the other 45 points are randomly
selected from the search space.

3. ATTRACTION BASED PSO ALGORITHM
In order to solve the transformed problem effectively, we

propose two new techniques. We first introduce a new parti-
cle comparison strategy to keep some infeasible particles. A
good infeasible particle is defined as follows: if the constraint
violation of one infeasible particle is less than a previously
defined threshold value ψ, the particle is said to be a good
one. ψ = 1

T

∑popsize

i=1 Φ(xi, t)/popsize, where T is a param-
eter, which increases from 0.4 to 0.8 with the increasing
generation number.

Algorithm 3.1 (Comparison Strategy)

Step 1. If two particles a1 and a2 are feasible solutions,
we select the one with the smaller rank value.

Step 2. If two particles are infeasible, we select the one
with the smaller constraint violation.

Step 3. Suppose one particle is feasible and the other is
infeasible, if the constraint violation of the infeasible
solution is smaller than the threshold, the two particles
are compared according to step 1; otherwise, we choose
the feasible particle.

While the proposed strategy is expected to improve the
diversity of PSO, it cannot guarantee PSO to generate good
particles with smaller constraint violations and rank values.
To deal with this issue, we design a new local search operator
based on the concept of attraction of force. Suppose particle
y is selected to undergo local search, other particles in the
swarm exert a force Fi(xi, y) to y, which is defined below.

Total Force: Imagine that there is a force from xi to y,
which is defined as Eq.3.

Fi(xi, y) = sign(∆)
xi − y

‖xi − y‖
·
C −Φ(xi, t)

rank(xi)

· exp[−
1

Dist(f(xi), f(y))
] (3)

where sign is the sign function, C = 10000, so that C −
Φ(x, t) > 0. rank denotes the rank value of a particle. dist
denotes the Euclidean distance. For a swarm pop include y,
the swarm has a total force to y,which is defined as F (y) =∑

xi∈pop,xi 6=y
Fi(xi, y). The local search to y is a variation

along the search direction F (y)
‖F (y)‖

, and the new generated

particle is defined as fy
1
= y+λ · F (y)

‖F (y)‖
, where λ ∈ (0, 1) is

the step size. Searching along this direction, better particles
are expected to be found.
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Figure 1: Evolved Pareto fronts: for DCTP1 at t =
0.2 (left); for DCTP2 at t = 0.8 (right).

3.1 Experiments and Comparisons
We choose two DCMOPs with complicated Pareto sets

from [3], named DCTP1 and DCTP2. The performance
of the proposed APSO is compared with DNSGAII [1] and
DMOPSO [2]. Due to the page limit, we only depict the
Pareto fronts found by the three algorithms at t = 0.2 for
DCTP1, t = 0.8 for DCTP2. For the proposed APSO, we
set a swarm size of 100, the local search probability 0.3, the
maximal generation number 150 for each fixed time interval,
c1 = c2 = 2.0; and the inertia weight ω = 0.4.

From Fig.1, we can see that the APSO generally performs
better than both DNSGAII and DMOPSO on all test prob-
lems, in both the convergence and diversity metrics.

4. CONCLUSIONS
The goal of this paper was to investigate a PSO based al-

gorithm for DMOPs with constraints. The goal was success-
fully achieved by developing a new sphere search method,
a new comparison strategy and an attraction based local
search operator. The new algorithm was examined and com-
pared with two well known algorithms on two test functions
of different kinds. The results show that the proposed algo-
rithm can find a widespread Pareto front regardless of the
shape of the Pareto front.
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