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ABSTRACT

The application of a genotype-phenotype mapping in Evo-
lutionary Computation is not a new idea, however, how
this mapping process is interpreted, and implemented varies
wildly. In the majority of cases a very simple abstraction of
the biological genotype-phenotype mapping is used, but as
our understanding of this process increases, the deficiencies
in current approaches become more evident. In this paper,
an outline of what approaches have been taken in the in-
vestigation of the genotype-phenotype map in Grammatical
Evolution are presented and an outline of proposed future
work is introduced.

Categories and Subject Descriptors

I.2 [Artificial Intelligence]; I.2.2 [Automatic Program-

ming]
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1. INTRODUCTION
The adoption of a Genotype-Phenotype Map (GPM) for

Genetic Programming (GP) [11, 18] has demonstrated per-
formance advantages over traditional tree-based GP [4, 13,
10, 2]. One of the most popular grammar-based forms of
GP [12], Grammatical Evolution (GE), adopts a genotype-
phenotype map which has been argued to provide a number
of advantages over standard GP [16]. The GPM provides GE
with the ability to search both genotypic space and solution
space in a many to one relationship, unlike traditional GP
which has a one to one mapping. The many-to-one mapping
allows for multiple solutions to have the same performance
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but be structured differently. This feature allows for neu-
tral search which allows the Evolutionary Algorithm(EA)
to search with zero impact on performance amongst the dif-
ferent variants of the same solution and has been shown to
allow GPM-based variants of GP to resist getting stuck at
local optimal solutions [2]. Whilst these results are encour-
aging it has yet to be established what effect the GPM has
on an EA such as GE. How does changing the order in which
the mapping is done effect the EA? Can further inspiration
be taken from biology which first inspired the GPM in GP
to improve the EA. Recently these topics have started to be
tackled [8, 15, 6, 7, 1, 14], but many more avenues of ex-
ploration remain as the interpretation of mapping used by
GE is simplistic and lacking in some of the desired advanced
features of the GPM that exist in nature [3].

GP research in dynamic environments was recently noted
as an open issue for GP [17]. Within a dynamic environment
the ability to adapt to change is crucial. Fast adaptation of
a GP system requires diversity to be present within the pop-
ulation. The degeneracy offered by a GPM provides the sys-
tem with diversity within the population thus making it the
ideal choice when applying GP to dynamic environments.
However the current usage of GPM has been noted to lack
the complexity shown in nature [3] as it is based upon an
old model of what was once perceived to take place within
Genotype-Phenotype Mappings in the natural world.

The remainder of this paper is as follows. An overview of
the main research objective in Sections 2 and 3, followed by
a summary of work done in Sections 4 and 5, and finally an
outline of the future direction of the research in Section 6.

2. RESEARCH OBJECTIVE
Whilst the idea of the GPM has been around for decades

within the field of GP a comprehensive in depth examina-
tion of the topic remains absent from the field. Whilst most
studies focus on the application of a new or refined mapping
process, the outcome of these studies in general, is purely
performance based. Most approaches are benchmarked and
compared to a standard simplified approach to Genotype-
Phenotype Mapping or even standard GP variants such as
grammar based GP. These studies lack a broad spectrum
of comparison to other approaches. The no free lunch

theory states no single search algorithm can be the best at
all problems and with this in mind it makes sense to find as
many successful variations of the Genotype-PhenotypeMap-
ping process to try and ensure a greater spectrum of pos-
sible good approaches to mapping. It has also been noted
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that we need to complexify our approaches to GP to nar-
row the gap between GP and actual biological systems [17].
Through this proposed investigation, more complex map-
ping approaches the need for which is further highlighted
in [3], will be considered and investigated to try and help
narrow the gap between accepted abstractions of GPM and
what actually occurs in nature.

Recently it has been noted that the lack of investigation
and application of GP to dynamic domains is an open is-
sue within the field of GP [17]. Further focusing on this
issue, the investigation of Genotype-Phenotype Mapping be-
haviour with dynamic environments it is found lacking and
in need of in-depth investigation. As understanding of the
natural mapping process becomes more widespread, it is
seen that mapping is a complex two-way system that adapts
at each stage of mapping [3], unlike traditional one way ap-
proaches which are the norm in EC. It has already been es-
tablished that the GPM provides diversity to a system and
this diversity is key for fast adaptation to new environments.

It is from these two arguments above that I see the need
to explore the open issues I perceive within GPM in the field
of GP. An in-depth review of current mapping ideas is re-
quired and a comparison or benchmarking of each approach
is needed. The surface has only been scratched with regards
to inspiration from biology and further enhancement of the
Genotype-Phenotype mapping with this knowledge is worth
investigation. Finally all this work needs to be applied to
Dynamic Environments and examined for performance and
behaviour of the algorithm, as Dynamic Environments are
the real world problems we face every day and desire so-
lutions for from GP. It is my hope that a more complex
mapping process will result in the ability for a Genetic Algo-
rithm to adjust to Dynamic Environments appropriately and
become more resistant to fall-off in performance in highly
volatile environments.

3. RESEARCH QUESTIONS
Do different GPM’s impact on GE’s performance?

With any form of Genetic Programming where a mapping
from chromosome to possible solution is performed the way
in which this mapping is performed can have a large impact
on performance. With Grammatical Evolution a GPM is
used in which mapping is performed on the chromosome to a
grammar and the phenotype or possible solution is mapped
in a left-most first manner. This introduces a bias in the
mapping process which can be beneficial with certain prob-
lems as noted in [9].

My approach will examine different ways of implementing
this mapping from chromosome to solution and investigate
the possibility of the existence of mappings that are more
suited to certain types of problems, or if a general mapping
can be found which exhibits acceptable performance across
all problem domains.

Do advanced genetic operations exist that when

applied to the new GPMs impact GE’s performance?

It is not enough to simply investigate new mapping pro-
cesses and report on findings. Genetic Operations used in
many GP systems are reliant upon the mapping process.
Applying standard mutation within a system using a differ-
ent mapping can be tantamount to making the algorithm
perform no better than random search as the change is too
destructive to allow for any form of evolution or knowledge
to be maintained within a chromosome.

Different mappings require genetic operators which are
firstly enhanced to deal with the complex and different types
of mappings possible. This will allow for the evolutionary
process to work, but in certain cases mappings present an
opportunity to use advanced genetic operators not possible
with standard mapping practices. These operators allow for
a great degree of freedom for the system to fine tune the
evolutionary search going on and in certain cases adjust to
prevent convergence which is a big problem within GP. This
idea of mapper specific genetic operations represents a key
area of investigation within the area of GPM to enable us to
get the best performance out of the various types of GPM.

My approach will examine all the mapping approaches
used within this proposed thesis and examine if there ex-
ists the possibility of implementing operators to take advan-
tage of degrees of freedom in the mapping to help refine the
searching process. As the research moves to the dynamic
problem domain the application of dynamically changing
operators may prove to provide desired improvement to the
performance of the algorithm.

Do observed impacts on performance hold when

applied to Dynamic Environments? Currently the ma-
jority of work within the field of Genetic Programming is
performed on static environments. The main goal of all re-
searchers within the field would be to apply their work to
real world problems and as we all know the real world can be
very dynamic. However, research within static environments
is very useful in that it can provides the ability to design ex-
periments where the behaviour or solution is known and thus
allows for focused research on certain aspects of a genetic
algorithm, where changes can be observed and performance
of the changes to the algorithm can be easily examined and
benchmarked.

Once a system has been examined and fine tuned within a
static environment the next logical step is to examine these
changes within a, similar, dynamic environment. This allows
for the examination of the observations made within a static
testbed and to see if they translate into the new dynamic
testbed environment, or if the addition of the changeable
environment will favour different mapping strategies, and
genetic operations.

4. GPM IN GE
GPM in GE begins by finding the start symbol in the

grammar. This non terminal (NT) in the case of the example
grammar shown in Fig. 1, <e> is then evaluated using Eq. 1.
By taking the first codon value of the GE chromosome (12)
and the number of expansions possible for the state <e> (2),
we get the first expansion of the tree, where <e> expands
to <e><o><e> (12%2) . From this point on the leftmost
NT is always expanded first in the derivation process. This
action will continue to be performed until no NTs remain
to be expanded in the derivation tree. An example of this
mapping is shown in Fig. 1 where the order of expansion
is indicated by a set of numbers on the arrows between the
blocks on the diagram, in the form of 1(12%2) where 1 is
the expansion order and 12%2 is the application of Eq. 1.

New Node = Codon value % Num. of rules for NT (1)

NT to expand = Codon value % Num. of NT
′

s (2)
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<e> ::= <e><o><e>

| <v>

<o> ::= + | *

<v> ::= 0.5 | 5

Chromosome ::=12,8,3,11,

7,6,11,8,

4,3,3,11,

15,7,9,8,

10,3,7,4

< e >

< e > < o > < e >

 1 ( 12 %2 )

< e > < o > < e >

 2 ( 8 % 2 )

< v >

 13 (15 %2 )

*

 12 (11 %2 )

< e > < o > < e >

 6 ( 6 % 2 )

< v >

 3 ( 3 % 2 )

*

 5 ( 7 % 2 )

< v >

 7 ( 11 %2 )

< v >

 10 ( 3 % 2 )

+

 9 ( 4 % 2 )

5

 4 ( 11 % 2 )

0.5

 8 ( 8 % 2 )

5

 11 (3 %2 )

5

 14 ( 7 % 2 )

Figure 1: Example Grammar and GE GPM

1. (e)-12%1=0

2. (e),o,e-3%3=0

3. o,(e),v-7%3=1

4. o,(v),e,o,e-11%5=1

5. (o),e,o,e-4%4=0

6. (e),o,e-3%3=0

7. (o),e,v-15%3=0

8. e,(v)-9%2=1

9. (e)-10%1=0

10.(v)-7%1=0

< e >

< e > < o > < e >

 1 ( 8 % 2 )

< e > < o > < e >

 3 ( 6 % 2 )

< v >

 2 ( 11 %2 )

*

 5 ( 3 % 2 )

< v >

 6 ( 11 % 2 )

< v >

 9 ( 3 % 2 )

*

 7 ( 7 % 2 )

0.5

 4 ( 8 % 2 )

0.5

 8 ( 8 % 2 )

0.5

 10 ( 4 % 2 )

Figure 2: πGE ’s Order selection and GPM

The only difference between standard GE and πGE [15]
in its purest form is in the mapping process from genotype
to phenotype. πGE’s mapping process differs from that of
GE in that each expansion of a NT requires two codons.
The standard GE chromosome is essentially split into pairs
of values where the first codon of the pair is used to choose
which NT to expand and the second is used to choose what
to expand the NT to, based on the rules available for a NT of
that type. The chromosome shown in Fig. 1 can be viewed
as a list of paired values such as ((12,8),(3,11)..), where
the first value of the pair (The Order Codon) is used to
determine the next NT to expand by using Eq. 2 and this
will return which NT to choose from a list of unexpanded
NTs. Once the NT to be expanded has been chosen, the
second codon (Content Codon) is used in conjunction with
Eq. 1 (the standard GE expansion rule) to determine what
the NT expands to; and if this node happens to be an NT,
it is added to the list of unexpanded NTs. Fig. 2 shows the
expansion of the example grammar in Fig. 1 using the πGE
mapping process. The number associated with each branch
of the tree is a reference to the numbered steps shown in
Fig. 2 which show how each choice of NT to expand comes
about. It is interesting to note the different shape and size
of the examples based on just a change in mapping.

The two methods for GPM in GE presented above rep-
resent the starting point, and current most advance GPM
representation explored. Other variants of the GPM in GE
have been looked at as well during this research. In [8],
the above GPM and the following are examined. Breadth-

first, which maps all of the non-terminal symbols at each
successive level of the derivation tree, before moving on to
the next level down and Random control strategy, which
randomly selects a NT to expand amongst all of the NTs
that currently exist in an expanding derivation sequences.

The initial study showed that of the four mapping strate-
gies examined, πGE represented the best avenue to explore
as it showed performance on a par with the standard GE
GPM except on the Max problem. In [6] investigation into
this observed decrease in performance of πGE on the Max
problem led to the introduction of some new variants of both
the GE and πGE mappings. Some new variations of map-

pers where required. The experiments planned required a
version of πGE, in which the order codons of the mapping
were fixed across the whole population, that is not affected
by crossover or mutation. This fixed order πGE requires the
addition of an order chromosome to standard GE and then
an edit to the πGE mapper so it would work with the new
desired setup. This setup is referred to as Fixed-Order

and was necessary to see if the constantly changing order
of expansion in the πGE mapping process, was the cause of
the performance decrease. The mapping served as an exper-
iment by itself, as it showed if any randomised order might
do as well as πGE . The final GPM explored was Right-

Most, this is a variant of the standard GE GPM. Rather
than taking the left-most NT and expanding as in standard
GE, in Right-Most, GE always selects the right-most NT
for expansion. This way of mapping was required for this
study as it provided a similar performance to the standard
GE GPM, whilst also furthering insight into what happens
within the evolution of a solution to the Max problem.

5. GPM BASED OPERATORS
Adopting the πGE GPM allowed for certain degrees of

freedom within the mapping process that could be exploited.
In [7] one such freedom, which exists in the mutation oper-
ation, was used to explore the effect mapping order has on
the performance of GE. πGE allows for the mutation of the
specific codons that control the order of expansion as well
as the choice of expansion. In total four different variants
of the mutation operation where tested and the results ex-
amined. Order Mutation, restricted to codons responsible
for determining the mapping order. The results observed
on this setup relative to the others allowed us to determine
the contribution of the search focused on the order codons
towards the success of πGE. Content Mutation, restricted
to codons responsible for production rule selection. When
compared to a standard GE mapping, in effect the mapping
order is largely randomised here upon initialisation of the
order codons in the first generation. πGE Mutation events
are allowed on both order and content codons. Ratio Mu-
tations were examined where the ratio of order to content
mutation events are varied to examine the situation where
the search is allowed to continue on both the order and con-
tent codons, but at different relative rates. This showed if
there may be an advantage in rebalancing the relative rate
of codon and order search. Crossover is also subject to some
modification under a πGE mapping. The ability to break
up the location and content pairs of the chromosome during
crossover or preserve this relationship is now possible.

6. FUTURE WORK

6.1 Complex Mappings
The first and primary goal of the future work will be to

further examine the existing literature for novel approaches
to GPM and also try to take further inspiration from na-
ture and examine if different methods to perform Genotype-
Phenotype mapping can be derived and implemented. Dur-
ing the process of implementing new variants of the GPM,
it must also remain in focus to examine the approach being
used to perform GPM and investigate if there exists scope
for complex operators. Some operators already established
such as those seen in [7] can by dynamically changed to allow

785



for variable performance rates. The use of new operators go
hand in hand with new GPM implementations so in the view
of this author, the development of these operations go hand
in hand with the new GPM. A successful GPM strategy is
only as good as the operators that interact with the GPM.

6.2 Dynamic Environments
The main idea behind this research is to apply GPMs to

a wide range of Dynamic Problems. Dempsey [5] provided
a very in-depth survey of how to classify dynamic problems.
Dempsey examined work by many, and put forward his idea
of a spectrum or range of dynamism, based on this work,
and that all problems within the dynamic domain would
have a place upon this spectrum. The spectrum goes from
the two perceived extremes of change, one side being the
very small predictable change problems and the other be-
ing the completely random, large degree of change that was
unpredictable. Since the work outlined in previous sections
called for a suite of dynamic benchmark problems this will
form one of the important tasks that needs to be completed.
The goal of this section of proposed research is to establish
a suite of problems that will provide a good coverage of this
spectrum. This task is currently underway and it is hoped
to add to the initial dynamic problems implemented to date.

6.3 Apply research to Dynamic Environments
Upon establishment of a suite of Dynamic Benchmark

Problems the next set of experiments proposed will be a re-
peat of those performed within the static benchmark prob-
lems. Once completed it will be possible to investigate if
the observed behaviour of the mapping process on the static
benchmarks translates into the dynamic domain. This will
then lead to a series of experiments that will be needed to see
why we may observe a positive or negative impact on per-
formance. This should lead in nicely to the next research
topic which is that of dynamic mappers and operators.

6.4 Dynamic GPM and Genetic Operators
With the introduction of Dynamic Environments to this

research the idea of having dynamic GPM’s and operators
could prove to be a very desirable feature. The idea that
certain GPM’s could be better suited to certain types of sit-
uations that could exist in the environment such as, one type
of GPM could be very good when the environment is highly
changeable, while another might be very good at times of
limited change, leads to the conclusion that some form of
dynamic approach to mapping may lead to an as yet unseen
performance advantage. In the same way, having operators
that can adjust the degree of change within an algorithm
can also be of benefit. Being able to inject diversity into a
converged population after a prolonged period of time in a
certain environment would certainly be desirable.
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