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ABSTRACT

This work concerns the post-optimal analysis of the trade-
off front of a multi-objective optimization problem to extract
useful design knowledge pertaining to these high-performing
solutions. The expected knowledge basically consists of sta-
tistically significant relationships between the objective func-
tions and decision variables. These relationships are repre-
sented in an intuitive and easy-to-use mathematical form.
Since a number of such relationships may exist, for efficiency
it is desirable that they are obtained in a single knowledge
extraction step. Further, problem knowledge can be ex-
plored at two levels: lower and higher. At the lower-level,
our interest is in finding a subset of the trade-off solutions to
which the obtained relationships are exclusive. The higher-
level knowledge addresses the effect of varying the problem
parameters (that are kept constant in one run) on the trade-
off front and therefore on the relationships. These concepts
are explained through different examples.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning—Knowledge ac-

quisition

General Terms

Algorithms
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1. INTRODUCTION
Knowledge discovery is a concept which applies to a mul-

titude of data points. A single optimal solution to a design
problem which involves only one objective is insufficient to
yield any design specific knowledge. On the other hand,
if the same design involves multiple conflicting objectives,
a single solution is unlikely to exist. Methodologies exist
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which can generate a set of designs that are optimal in the
Pareto sense. Useful problem knowledge can be gained by
analyzing these designs post-optimally. Of prime impor-
tance are the features that are common to all or most of
these designs. They are referred to as ‘design rules’ [5] or
‘design principles’ [4]. If these commonalities can be auto-
matically, reliably and efficiently extracted for a wide range
of problems it will be possible to identify certain fundamen-
tal characteristics that the design should (or should not)
possess in order for it to be Pareto-optimal. Various ways
of usefully employing this knowledge (design rules or prin-
ciples) have been proposed:

1. The most significant of the design rules can be stored
in the knowledge base of an expert system for future
reference in design cases that are structurally similar
to the original one used for knowledge extraction [7].

2. The knowledge can be used as an investigative tool for
analyzing existing designs with desirable qualities and
proposing changes which can push the design towards
Pareto-optimality [5].

3. Certain representations of the knowledge can be used
to determine the sensitivity of the Pareto-optimal de-
signs to the decision variables [4].

4. Crucial design decisions can be governed by the ex-
tracted design principles.

5. Suitable forms of the knowledge can be integrated into
an optimization algorithm to give a heuristics-based lo-
cal search algorithm for improving near Pareto-optimal
solutions.

In the following section, we discuss different design knowl-
edge representations available in literature and give a short
description of a new design methodology called innovization.
Thereafter in Sec. 2, we describe the automated innoviza-
tion algorithm developed as part of this work. Results with
this algorithm are illustrated in Sec. 3.1 on a well-studied
truss design problem. Next an architectural design problem
is briefly considered in Sec. 3.2 to show how the proposed
knowledge extraction scheme can be beneficial even when
the objectives are vague. Finally in Sec. 4, we very briefly
show some preliminary results from a higher-level innoviza-
tion study on a practical friction-stir welding problem.

1.1 Knowledge Representation
Knowledge can be implicit or explicit. Implicit knowledge

can be very difficult to employ in the ways described above.
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Explicit knowledge, on the other hand, requires a language,
e.g. mathematical, visual, etc. Broadly speaking, the way
the extracted knowledge is represented mainly depends on
the problem. For example, an association rule based repre-
sentation may be well-suited for designs with class variables
but may lose efficacy in, say, an engineering design problem.
As a result, different representations have been proposed in
literature. Most notable are rule-based [8], self-organizing
maps [6] and dendograms [10].

Innovization (innovation through optimization) [4] pro-
poses the use of monomials (where negative exponents are
allowed) for knowledge representation. Recall that a design
principle is a feature that is common to all or a majority
of the Pareto-optimal solutions. In the innovization frame-
work, this means

Definition 1. ψ(x) ≡ φb1
1 (x)φb2

2 (x)φb3
3 (x) . . . = c is a de-

sign principle applicable to A ⊆ P , the set of Pareto-optimal
solutions, if there exist problem specific functions φj and ex-
ponents bj ∈ R : c evaluates to the same value for all decision
vectors x in A.

Here, φj ’s are user-defined functions and usually the vari-
ables and objectives of the problem are the primary choice.
This mathematical form of knowledge representation for the
design principles can be very beneficial to a designer inter-
ested in knowing, for example, how changes in one variable
will effect other variable(s) if the design has to retain its
Pareto-optimal nature. Also, this representation easily lends
itself to the various uses that the extracted knowledge can
be put to.

For illustration, let us consider the simple two-bar truss-
structure shown in Figure 1. The total volume (V) and
the maximum stress (S) induced in either of the bars have
to be minimized simultaneously. The cross-sectional areas
x1, x2 and the dimension y are the design variables (x) of
the multi-objective problem which is formulated as:

Minimize V = x1

p

16 + y2 + x2

p

1 + y2,
Minimize S = max(σAC , σBC),
Subject to max(σAC , σBC) ≤ 105 kPa,

0 ≤ x1, x2 ≤ 0.01 m2,
1 ≤ y ≤ 3 m.

(1)

This simple design problem is solved using NSGA-II. A
Pareto-optimal front with 1000 points is obtained. Manual
innovization requires that we plot different variable/objective
combinations and perform a regression if significant corre-
lations are found. Figure 2(a) shows two significant design
principles. They tell the designer that a majority of Pareto-
optimality occurs when V and x2 are directly proportional
to x1. Since these principles are applicable to the same
set of points, a third design principle can also be generated.

Figure 1: Two-bar truss configuration.
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Figure 2: Manual innovization for truss design.

Figure 2(b) shows another design principle involving the ob-
jectives S and V . Here a logarithmic transformation of the
points is required before regression. Note that all these rela-
tionships fit into the mathematical structure in Definition 1.
Though in this case, the obtained relationships are exact1,
this need not be true for generic problems. All that should
be expected is empirical interdependencies between the φ
functions (referred to as ‘basis functions’ in the context of
automated innovization).

2. AUTOMATED INNOVIZATION
Manual innovization cannot be used to discover interac-

tions between more than two or three basis functions due to
the cognitive inability of humans to perceive in higher di-
mensions. Furthermore, the process is tedious and involves
data transformations and an additional task of regression.
The human-error factor can also not be overruled. Here, we
propose a clustering based methodology to extract the de-
sign principles automatically. The user is required to only
input a set of N basis functions. Within the automated
innovization framework, the i-th design principle is repre-
sented as,

ψi(x) ≡ ΠN
j=1φj(x)aijbij = ci. (2)

The manual choosing of various basis function combina-
tions is automatically accomplished through the Boolean
variables aij ’s which represent the presence (1) or absence
(0) of a basis function. For all such choices, we quantify the
significance Si of ψi(x) using the percentage of the trade-off
solutions that it applies to. According to Definition 1, these
trade-off solutions form the subset A. Since the ci-values are
expected to be equal within this subset, a clustering algo-
rithm can be used to identify A. We propose the following
grid-based clustering methodology [2]:

1. Sort {c(1)i , c
(2)
i , . . . , c

(m)
i } evaluated for the m trade-off

solutions using ψ(x).

2. Divide the range [ci,min, ci,max] into di divisions. ndi

be the number of ci-values falling in the di-th division.

3. Label the divisions with ndi
≥ ⌊m

di
⌋ (the average num-

ber of ci-values per division) as sub-clusters.

4. Label the trade-off points corresponding to the ci-values
in the remaining divisions as unclustered.

1Eq. (1) can be analytically solved using x1

p

16 + y2 =

x2

p

1 + y2 and σAC = σBC (identical resource allocation).
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5. Merge adjacent sub-clusters to form Ci clusters.

6. Count the number of unclustered trade-off points Ui.

Here, di is a parameter of the clustering algorithm which
can take any value in the range [1, m] ∀ i. A suitable value
for it can be obtained by minimizing the number of clusters
and unclustered points. Unclustered trade-off points will
have ci-values which are very different from each other and
also from those in the clusters. Thus they are the points
that do not follow the i-th design principle. By definition,
the significance can now be obtained as,

Si =
m− Ui

m
× 100%. (3)

2.1 Converging to a Design Principle
The near Pareto-optimal nature of the solutions obtained

from a numerical algorithm like NSGA-II prevents the ci-
values in the subset A from being exactly equal. Therefore
in the present work, the coefficient of variance (cv = σ/µ) is
used to as a measure of the spread of ci-values. For converg-
ing iteratively to a design principle and hence improving its
significance, the cv’s have to be minimized in all Ci clusters.
The exponents aij ’s and bij ’s become variables in the result-
ing optimization problem. The parameter di of the cluster-
ing algorithm is also treated as a variable, and its value is
optimized for minimum number of clusters. As there can be
many clusters, the cv’s from different clusters are summed.
It was found [2] that the percentage coefficient of variance
has about the same order of magnitude as the number of
clusters. Hence the following weighted objective function is
used for finding optimal aij , bij and di,

Minimize Ci +

Ci
X

k=1

c(k)
v × 100%. (4)

2.2 Preserving Multiple Design Principles
A straightforward minimization of the above objective

function will only yield the most significant design principle
present in the trade-off dataset. However, innovization is
concerned with finding all principles which meet a threshold
significance. Previous manual [4] and automated innoviza-
tion [2] studies achieved this through multiple trials with
different sets of basis functions. A recent study [1] exploits
the population based nature of GAs to evolve multiple de-
sign principles simultaneously using a niching strategy. In
a GA each population member will represent a possible de-
sign principle with an associated significance Si. Two pop-
ulation members, u and v, which use different sets of basis
functions i.e. ∃ j : auj 6= avj , can evolve into two differ-
ent design principles and hence are not compared during
the selection operation of GA. Thus different ‘species’ of de-
sign principles can be made to coexist in the population.
Since aij ’s are Boolean, they can be encoded as a binary
variable of string length N . The exponents bij can theo-
retically take any real value. However, their range can be
restricted to [−1, 1] by simply dividing each of them with
the exponent having maximum absolute value in every gen-
eration of the GA. For example, φ2.5

1 φ1.0
2 φ−4.0

3 = c becomes
φ−0.625

1 φ−0.25
2 φ1.0

3 = c′. Note that the design principle is not
effected in the process.

In order to prevent trivial solutions (when aij = 0 ∀ j)
and complex design principles (when many basis function

Table 1: Reduced design rules for the truss problem

i a∗i1b
∗
i1 a∗i2b

∗
i2 a∗i3b

∗
i3 a∗i4b

∗
i4 a∗i5b

∗
i5 Rule

1 1.0000 0.0 0.0 -1.0006 0.0 V/x2 = c
2 0.0 1.0000 0.0 1.0005 0.0 Sx2 = c
3 0.0 0.0 1.0000 -1.0009 0.0 x1/x2 = c
4 0.0 0.0 0.0 0.0 1.0000 y = c

are involved), the constraint 1 ≤
P

j
aij ≤ N is introduced

in the problem formulation, whose complete form (for the
i-th design principle) is:

Minimize Ci +

Ci
X

k=1

c(k)
v × 100%,

Subject to Si ≥ Sreqd,
1 ≤

P

j aij ≤ N , 1 binary variable
−1.0 ≤ bij ≤ 1.0, N real variables
1 ≤ di ≤ m, 1 integer variable.

(5)

where Sreqd and N are user-supplied values indicating re-
spectively, the minimum threshold significance for the de-
sign principles and the maximum number of basis functions
that can participate in forming that design principle. The
mixed variable nature of the problem also justifies our use
of a GA to solve Eq. (5). The constraints are handled using
Deb’s penalty-parameter-less approach [3].

3. RESULTS

3.1 Row Echelon Reduction
The m = 1000 trade-off solutions obtained earlier for the

truss design problem are used to form the data-set for N = 5
basis functions, namely:

φ1 = V, φ2 = S, φ3 = x1, φ4 = x2, φ5 = y.

With Sreqd = 80% and N = 5, [1] reports the complete
set of 20 design principles that were obtained from a sin-
gle knowledge extraction step. However, many of them are
redundant. For example, the third design principle derived
form the other two in Figure 2(a) is extraneous information
for the designer who would prefer having all the design rules
in a compact form. We now use the row reduced Echelon
form of the exponents to condense the 20 design rules and
present them in a usable form. A tolerance is used during
row operations to accommodate for the fact that the origi-
nal data-set need not exactly represent the Pareto-optimal
front. Table 1 shows the reduced design rules for the truss
design problem. These are same as those in Figure 2.

3.2 Architectural Design Case
Decision-making tasks sometimes involve soft objectives

in the sense that they contain uncertainty, imprecision or
vagueness. The present example shows how design princi-
ples obtained automatically in such a design case can aid
decision-making. The problem is the optimal placement of
a number of residential units in an urban design, so that two
vague objectives are maximized: south/west garden area for
every house and visual privacy on the south facades. Fig-
ure 3 shows the plot with three existing houses, and the
decision variables associated with seven independent houses
(H) and two rows of houses (G).
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Figure 3: Schematic of the plot showing the coordi-

nate decision variables.

One of the 302 design principles obtained using the auto-
mated innovization approach is,

y0.3509
3 x0.5718

4 x1.0000
5 x0.3809

9 = constant. (6)

This relationship applies to 134 out of 135 points of the
Pareto-optimal front making it a significant one. It gives
the interdependency between four different variables. For
instance, most notably the principle tells the decision-maker
that if house H5 were moved to the west, then H4 should
be moved to the east, so that Pareto-optimality is ensured.
This principle aims to compensate the loss in west garden
area and decrease in privacy of H5.

4. HIGHER-LEVEL INNOVIZATION
As discussed earlier, higher-level knowledge addresses the

effect of parameters that are usually kept constant in a sin-
gle optimization run. Higher-level innovization is simply the
extraction of this higher knowledge through the automated
innovization technique. The present bi-objective problem
concerns process optimization of friction stir welding (FSW)
operation with respect to minimization of temperature gra-
dients (which effect weld quality) and maximization of weld
speed (for high production rate). The optimization formula-
tion can be found in [9]. The thickness of the weld which is
a parameter for the original FSW problem is taken as a vari-
able in the modified FSW problem. The result is a change
in the trade-off front as shown in Figures 4(a) and 4(b). The
× represent the unclustered solutions in both the figures.
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Figure 4: Higher-level knowledge in FSW problems.

5. CONCLUSIONS
In this paper, we have described an automated method-

ology for extracting hidden knowledge in the form of math-
ematical relationships from the Pareto-optimal solutions of

a multi-objective problem. Since many such relationships
showing the interactions between various problem entities
are possible, a niching strategy is implemented in the al-
gorithm to obtain all design principles simultaneously. We
demonstrated the algorithm for the simple truss design prob-
lem. The condensed rules are found to be exactly the same
as the analytically/manually obtained ones thus validating
the algorithm. Next we used the automated innovization
methodology in an architectural design problem involving 20
basis functions. Many relationships are obtained in the pro-
cess and the significance in decision-making is briefly demon-
strated. We also presented some preliminary results from
higher-level innovization. The lower-level knowledge discov-
ery, and development of a hybrid innovization-optimization
algorithm is considered part of the future work.
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