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ABSTRACT
The main objective of this doctoral research is to study Esti-
mation of Distribution Algorithms (EDAs) based on copula
functions. This new class of EDAs has shown that it is pos-
sible to incorporate successfully copula functions in EDAs.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; G.1.6 [Numerical
Analysis]: Optimization—Global optimization, Unconstrained
optimization

General Terms
Algorithms, Design, Performance

Keywords
EDAs, copula functions, graphical models

1. INTRODUCTION
Estimation of Distribution Algorithms (EDAs) are a well

established paradigm in Evolutionary Computation (EC).
This class of evolutionary algorithms employs probabilistic
models for searching and generating promissory solutions.
The goal in EDAs is to take into account the dependence
structure in the best individuals and transfer them into the
next population. A pseudocode for EDAs is shown in Algo-
rithm 1.
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Algorithm 1 Pseudocode for EDAs

1: assign t←− 0
generate the initial population P0 with N individuals at
random

2: select a collection of M solutions St, with M < N , from
Pt

3: estimate a probabilistic model Mt from St

4: generate the new population by sampling from the dis-
tribution of St.
assign t←− t + 1

5: if stopping criterion is not reached go to step 2

The research on EDAs has been conducted in proposing
and enhancing probabilistic models. Most of the probabilis-
tic models used in EDAs for discrete domains are based on
graphical models such as Bayesian and Markov Networks [9,
2, 24, 17, 16, 21, 22]. The discrete EDAs have been widely
studied and they have been also used in several applications.
However, for continuous domains, the Gaussian distribution
is the most used assumption over the probabilistic model
[12, 13, 14, 6]. For this reason, one of the current challenges
for designing new continuous EDAs is finding multivariate
models to adequately represent dependencies among the de-
cision variables.

On the other hand, during the last decade, the copula
functions have been widely used in many applications where
nonlinear dependencies arise among variables. By using cop-
ula functions it is possible to separate the effect of depen-
dence from the effect of marginal distributions in a joint
distribution. However, they have been barely used in com-
puter science applications where nonlinear dependencies are
common and need to be represented.

The following section presents a brief introduction to cop-
ula functions and some EDAs based on copula theory.

2. CURRENT RESEARCH
One motivation for this research has been the possibility

of proposing new EDAs for continuous domains. The copula
based EDAs are able, at the same time, (1) to model depen-
dencies among variables, and (2) to use flexible marginal
distributions. The copula theory gives the means for get-
ting such EDAs.
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2.1 Copula Theory

Definition 1. A copula is a joint distribution function of
standard uniform random variables. That is,

C(u1, . . . , ud) = Pr[U1 ≤ u1, . . . , Ud ≤ ud] ,

where Ui ∼ U(0, 1) for i = 1, . . . , d.

The following result, known as Sklar’s theorem, gives the
relevance and practical utility to copula functions.

Theorem 1 (Sklar). Let F be a d-dimensional distri-
bution function with marginals F1, F2, . . . , Fd, then there ex-

ists a copula C such that for all x in R
d
,

F (x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd)) ,

where R denotes the extended real line [−∞,∞]. If F1(x1),
F2(x2), . . . , Fd(xd) are all continuous, then C is unique.
Otherwise, C is uniquely determined on Ran(F1)×Ran(F2)×
· · · × Ran(Fd), where Ran stands for the range.

According to Theorem 1 and using the chain rule for dif-
ferentiating composite functions, any d-dimensional density
f can be represented as

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd)) ·
dY

i=1

fi(xi) , (1)

where c is the density of the copula C, and fi(xi) is the
marginal density of variable xi.

Equation (1) shows that the dependence structure is mod-
eled by the copula function. This expression separates any
joint density function into the product of the multivari-
ate copula density and the marginal densities. This con-
trasts with the usual way to model multivariate distribu-
tions, which suffers from the restriction that the marginal
distributions are usually of the same type. The separation
between marginal distributions and a dependence structure
explains why the copula functions are suitable tools for mod-
eling dependencies in a joint distribution.

The copula theory was introduced by Sklar [23] and has
been developed during the last fifty years. The interested
reader of this theory is referred to [11, 15, 25].

2.2 Related works
To the best of our knowledge the theses [3, 1] are the

first attempts to incorporate a multivariate Gaussian cop-
ula function in EDAs. Since then, other related works have
been published. These papers present EDAs based on (1)
the Gaussian copula function [30, 28], and (2) Archimedean
copula functions with a fixed dependence parameter [29, 26,
27, 7, 31]. Unlike the previous papers that use Archimedean
copula functions, the work [10] presents a way of estimat-
ing the copula parameter. These works use copula functions
to model pairwise relationships among all variables and do
not employ graphical models. On the other hand, we have
proposed the use of the maximum likelihood method and
copula entropies in order to (1) estimate the copula param-
eters, and (2) build a graphical model which establishes the
most important dependencies between variables [19, 20, 18].

2.3 Our proposed EDAs
Our research has been conducted for designing new con-

tinuous EDAs. These EDAs are described below.

• In [19] we have presented an EDA based on a chain
graphical model and bivariate copula functions. Every
chain link in the graphical model represents the de-
pendence between two decision variables. A bivariate
copula function is used for modeling such dependence.
The relationship between the mutual information and
the bivariate copula entropy [8] is used for measuring
the dependence between variables. The probabilistic
model used in this paper can be seen as a generaliza-
tion of the well known EDA MIMICG

C [12, 13]. In this
work, for the first time, the estimation of copula pa-
rameters by means of the maximum likelihood function
is presented.

• In [20], a regular vine [4, 5] is considered as a graphical
model for designing a new EDA. This EDA is based on
a particular family of regular vines called D-vine. In
this work we propose a greedy algorithm for building
such graphical model and we also show the theoretical
relationship between the entropy of a trivariate copula
function and the conditional mutual information.

• The previous works consider the use of a fixed copula
function. Based on this observation, the work [18] is
a recent contribution for selecting copula functions. A
tree graphical model is employed in this paper. A cop-
ula function is selected for modeling the dependence
between variables in each tree branch. The copula
function is selected from a set of six bivariate copula
functions and it is selected according to the likelihood
function.

Some results obtained by D-vine EDA for three well known
test functions in ten dimensions are reported in Table 1. For
the Rosenbrock problem, the range of values reached by a
D-vine EDA is closer to the global minimum than the range
of values of the other EDAs. This would mean that a depen-
dence structure based on a D-vine EDA is more adequate
than the chain structure of the MIMIC. More details about
these results can be seen in [20].

Figure 1 shows recent results by using a copula selection
procedure in EDAs. In this figure, the success rate is re-
ported by two chain and two tree graphical models. These
results show a clear advantage for probabilistic models that
are incorporated with a copula selection procedure. More
results are presented in [18].

A general procedure for estimating the graphical model in
our work has been the minimization of the Kullback-Leibler
divergence between the true density and the proposed den-
sity. This procedure has also used the natural relationship
between the entropy of a bivariate copula function and the
marginal mutual information of two variables [8].

3. CONCLUSIONS
The use of copula functions in EDAs has opened a new

research area. Our approach has been based on copula func-
tions whose parameters are estimated by means of maximum
likelihood, and the most important dependencies are repre-
sented by a graphical model.
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Table 1: Descriptive results for the fitness of three test functions.
Algorithm Best Median Mean Worst Std. deviation

Ackley
D-vine EDA 2.71E-005 4.11E-005 4.09E-005 5.16E-005 5.82E-006

MIMIC 2.89E-005 3.91E-005 3.92E-005 4.95E-005 5.21E-006
UMDA 2.83E-005 4.08E-005 4.15E-005 5.07E-005 4.63E-006

Rosenbrock
D-vine EDA 0.20 5.75 5.28 9.21 2.70

MIMIC 0.91 6.40 6.42 13.48 2.72
UMDA 7.93 8.02 8.10 10.28 0.42

Sphere
D-vine EDA 3.37E-007 7.75E-007 7.48E-007 9.99E-007 1.69E-007

MIMIC 4.48E-007 8.47E-007 8.14E-007 9.96E-007 1.52E-007
UMDA 4.20E-007 8.56E-007 8.11E-007 9.94E-007 1.64E-007
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Figure 1: Success rate results for (a) a separable
function, and (b) a non-separable function. The hor-
izontal axis represents the dimension problem and
the vertical axis represents the success rate. The
solid line is used for the EDAs based on copula se-
lection and the dashed line for the EDAs based on
the Gaussian copula.

The obtained performance results suggest that the incor-
poration of copula functions is a real option for designing
new continuous EDAs. Moreover, our reported experiments
have shown that modeling adequately the dependencies be-
tween decision variables is a good mechanism for getting
better performance results. Future work for our investiga-
tion will focus on the design of algorithms with strategies
for enhancing their performance.
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[13] P. Larrañaga, R. Etxeberria, J. Lozano, and J. Peña.
Optimization in continuous domains by learning and
simulation of gaussian networks. In A. Wu, editor,
Proceedings of the 2000 Genetic and Evolutionary
Computation Conference Workshop Program, pages
201–204, 2000.
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