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ABSTRACT
Many engineering design problems must optimize multiple
objectives. While many objectives are explicit and can be
mathematically modeled, some goals are subjective and can-
not be included in a mathematical model of the optimiza-
tion problem. A set of alternative Pareto fronts that repre-
sent multiple optima for problem solution can be identified
to provide insight about the decision space and to provide
options and alternatives for decision-making. This paper
presents the Multi-objective Niching Co-evolutionary Algo-
rithm (MNCA) that identifies a set of Pareto-optimal solu-
tions which are maximally different in their decision vectors
and are located in the same non-inferior regions of the Pareto
front. MNCA is demonstrated for a set of multi-modal
multi-objective test problems to identify a set of Pareto
fronts with maximum difference in decision vectors.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Optimization—Global
optimization

General Terms
Algorithms
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1. INTRODUCTION
Many real-world optimization engineering problems in-

volve multiple objectives that should be addressed simul-
taneously. A set of Pareto-optimal solutions that represents
the trade-off among conflicting objectives should be identi-
fied to provide knowledge about the performance of alter-
native solutions for design and management problems [1].
Many multi-objective evolutionary algorithms (MOEAs) have
been developed and designed to efficiently identify a set of
non-dominated solutions, and these algorithms have been
successfully applied for realistic engineering problems. The
fitness landscapes for realistic design problems, however, are

often non-linear, complex, and multi-modal. Alternate op-
tima or local optima may exist in the search space and,
when identified as alternative solutions, they can provide
both additional insight to the problem and options for im-
plementation.

While MOEAs typically utilize a mechanism for preserv-
ing diversity, such as niching, to ensure that solutions are
spread out uniformly along the Pareto front, they do not in-
clude an explicit mechanism to identify alternative Pareto-
optimal or alternative nearly Pareto-optimal solutions. To
provide additional insights for decision-making, a secondary
set of solutions can be identified that provide an array or
range of alternative decisions that could be made, while
achieving an acceptable level of performance for the ob-
jectives. These solutions should be identified by searching
explicitly for solutions that originate in diverse regions of
the decision space while satisfying objectives to the same
degree. The Multi-objective Niching Co-evolutionary Algo-
rithm (MNCA) is a new algorithm that is developed and
demonstrated here to identify alternative Pareto fronts with
maximum genotypic diversity. Fronts are identified that
are similarly close to a true Pareto front, while the deci-
sion vectors represented by each front are located in di-
verse regions of the decision space. MNCA is based on an
evolutionary algorithm-based framework, Evolutionary Al-
gorithm to Generate Alternatives (EAGA) [2], that uses a
set of subpopulations to identify an array of alternative so-
lutions for single-objective problems. MNCA extends the
EAGA framework by using a set of subpopulations to con-
verge simultaneously to Pareto fronts that are maximally
different in genotypic space from other subpopulations of
solutions. MNCA is demonstrated here to identify alternate
Pareto fronts for a suite of test problems.

2. MULTI-OBJECTIVE NICHING
CO-EVOLUTIONARY ALGORITHM

To initialize MNCA, a set of subpopulations are gener-
ated, and the first subpopulation searches for a Pareto front,
while secondary subpopulations search for alternative sets of
non-dominated solutions that are diverse in decision space
while approximating the Pareto front. In the first subpopu-
lation, any MOEA can be used to identify an optimal Pareto
front, while specialized operators are required in secondary
subpopulations. At each generation, a target front is cre-
ated based on the non-dominated set from the first popu-
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lation. To create the target front, each solution from the
non-dominated front is copied into an array, and the objec-
tive values of each solution are reduced using a target value,
while the decision variable values are discarded. In the re-
maining subpopulations, which are labeled as secondary sub-
populations, solutions are tagged as feasible if they dominate
the target front. To calculate a difference metric, a solution
should be compared to solutions in other subpopulations
that are located in similar regions of the objective space. All
solutions are grouped into clusters based on their similarities
in phenotypic space, using k-means clustering. A solution
in a secondary subpopulation is assigned a difference met-
ric based on its genotypic distance to solutions which are in
the same cluster, but in other subpopulations. Solutions in
secondary subpopulations are selected to survive based on
feasibility, the difference metric, and non-dominance.
In this implementation, the MOEA that is used to iden-

tify a Pareto front in the first subpopulation is the Hyper-
volume Maximizing Multiobjective Evolutionary Algorithm
(HM2EA) [4]. The hypervolume is defined as the space
that is covered by all the solutions in the non-dominated
front with respect to a worst point [3]. HM2EA uses non-
dominated sorting and hypervolume calculations in the se-
lection operator and combines child and parent populations
at each generation. The combined population is sorted into
fronts using non-dominated sorting, and fronts are selected
in order of decreasing non-dominance to allow solutions to
survive into the next generation. If there are more solutions
in a front than the number of solutions that are needed for
the next generation, solutions are selected from the front
based on an S-metric value, which is the incremental contri-
bution of each solution to the hypervolume. For selection in
secondary subpopulations, HM2EA is altered to allow con-
sideration of the feasibility of solutions and to incorporate a
modified definition of the hypervolume and S-metric.

3. RESULTS
MNCA was tested for the Two-on-One function (Fig. 1)

[5] and identified three alternative sets of non-dominated
solutions. The target was set at 80% for identifying non-
dominated solutions in secondary subpopulations. The sec-
ond subpopulation identifies solutions that are very different
from the first subpopulation in the decision space, located
across the origin from the solutions in the first subpopu-
lation. The Pareto front of the second subpopulation is
only slightly dominated by the first subpopulation and has
a greater spread along the f2 axis. The third subpopulation
identifies solutions that are different from both the first and
second subpopulations, but the Pareto front shows a large
loss in quality when compared to the Pareto fronts identified
by the first and second subpopulations.

4. DISCUSSION
The purpose of MNCA is to identify diverse solution char-

acteristics for Pareto-optimal solutions in the same region
of the Pareto front. The MNCA framework uses subpop-
ulations of solutions, a conventional MOEA, a clustering
algorithm, and a new selection operator for identifying di-
verse and Pareto-optimal solutions. The MOEA for finding
Pareto-optimality in the first subpopulation and the clus-
tering method can be easily replaced with other similar al-
gorithms to explore new results. MNCA requires few addi-
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Figure 1: Results for Two-on-One. Upper row -
Genotype space as x2 vs. x1. Lower row - Objective
space as f2 vs f1. Columns (left to right) represent
subpopulations 1-3. Colors indicate five clusters.

tional algorithmic parameters, including the number of al-
ternative Pareto fronts that should be identified, and a tar-
get, which represents the level of degradation in the Pareto
front that would be acceptable. The target can have a sig-
nificant influence on the type of results that are identified,
depending on the characteristics of the fitness landscape. As
MNCA is designed to address the complexities of decision-
making for engineering design problems, further work will
apply MNCA for realistic multi-objective engineering prob-
lems.
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