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ABSTRACT

Evolutionary Algorithms are powerful function optimizers,
but suffer from premature convergence. Quantum-Inspired
Evolutionary Algorithm (QEA) has been shown to be less
prone to this on an important class of binary encoded prob-
lems. QEA uses Q-bits in place of ordinary bits, introducing
a rational parameter into an otherwise binary search space.
The essential feature of QEA is that the fitness of individ-
uals in the population is defined stochastically by sampling
from discrete points in the landscape. The probability of
a particular point being sampled is based on the proximity
of an individual to that point, where the individual repre-
sents a point in the solid hypercube spanned by the possible
discrete solutions. This paper presents Probabilistically In-
terpolated Rational Hypercube Landscape Evolutionary Al-
gorithm (PIRHLEA), which generalizes QEA by relaxing its
two vestigial quantum mechanical attributes: quadratic and
angular parameterization of probabilities and using single
samples to determine fitness estimates of individuals. This is
accomplished by replacing each Q-bit with a rational param-
eter between zero and one. Compared to QEA, PIRHLEA is
simpler to code, more computationally efficient, and easier
to visualize. PIRHLEA also permits multiple samples from
points in the landscape to determine individuals’ fitness.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; F.2 [Theory of Computation]: Anal-
ysis of Algorithms and Problem Complexity

General Terms

Algorithms, Theory
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1. INTRODUCTION
Evolutionary Algorithms (EAs) are powerful function op-

timizers, but suffer from premature convergence on multi-
modal problems due to loss of genetic diversity caused by
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excessive selective pressure. While this may be in part due
to inadequate parameter tuning, on problems with binary
representations improved performance may be attained by
transforming the search space by sampling from an interpo-
lated version of the landscape.

Quantum-Inspired Evolutionary Algorithm (QEA) is less
prone to premature convergence on the binary knapsack
problem compared to various traditional EAs [1]. This is
perhaps due to it introducing a rational parameter, in the
form of a Q-bit, into an otherwise binary search space, to en-
able probabilistic sampling of discrete points in a hypercube
during fitness evaluation. A geometric interpretation is pos-
sible, if Q-bit vector individuals are identified with points in
the solid hypercube spanned by the possible discrete solu-
tions. The probability of a particular point being sampled is
based on the proximity of an individual to that point. The
quantummechanical inspiration for QEA has caused the for-
mulation of the algorithm to be unnecessarily complicated.
In fact, it is possible to replace each Q-bit by a rational
parameter between zero and one to encode probabilities.

This paper presents Probabilistically Interpolated Ratio-
nal Hypercube Landscape Evolutionary Algorithm (PIRHL-
EA), which generalizes QEA by relaxing its two vestigial
quantum mechanical attributes: quadratic and angular pa-
rameterization of probabilities and using single samples to
determine fitness estimates of individuals. This is accom-
plished by replacing each Q-bit with a rational parameter
between zero and one. Compared to QEA, PIRHLEA is
simpler to code, more computationally efficient, and eas-
ier to visualize. This is due to it using a linear parame-
ter for the probability rather than a quadratic or angular
one. PIRHLEA also generalizes QEA by permitting multi-
ple samples from points in the landscape to determine the
fitness of an individual, potentially resulting in better on-
the-fly fitnesss estimation.

2. BACKGROUND
The main topic of this paper, common to all of the algo-

rithms discussed here, is the use of interpolation to trans-
form a potentially rugged binary encoded discrete search
space into a smoother one. QEA does so by letting individ-
uals, parameterized by probability, sample the points of the
landscape in order to allow an individual’s fitness to depend
on its distribution. In this way, an individual does not “live”
at a single vertex of the original hypercube domain, but in-
stead has a general location, within the solid hypercube that
the landscape points span, that depends on its distribution.
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It is hypothesized that the superposition of points of the
landscape inside the distribution of an individual is the key
to QEA’s success; yet, it is also fundamentally important
that individuals’ distributions may vary smoothly within the
transformed search space of a solid hypercube. For when the
search space was parameterized more coarsely, the observed
performance was unimpressive in some cases. In several ap-
plications [1, 2], however, QEA demonstrated its superiority
over traditional EAs with respect to finding better solutions
in less time. As noted, with QEA and PIRHLEA, an in-
dividual may be located in the solid hypercube instead of
only at a vertex. In Figure 1, the individual shown has
a Q-bit representation with α1 = 1/2, β1 =

√
3/2, α2 =√

2/2, β2 =
√
2/2. Its angular representation has θ1 = π/3

and θ2 = π/4, but for PIRHLEA the linear representation
is simply (3/4, 1/2).

A precursor of PIRHLEA, Explicit Schema Sampled EA
(ESS-EA), used schemata explicitly as individuals in a way
similar to how QEA uses Q-bit vectors. Considering that
the fitness of a schema is defined to be the average of the
fitnesses of its constituents, and, geometrically, schemata
correspond to midpoints of those constituents inside the hy-
percube, there is a natural interpretation of the collection
of schemata as the product of a finite number (the length of
the bit-string in the domain) of copies of the set {0,0.5,1}.
It is not necessary to evaluate all members of each individ-
ual schema to estimate the schematic fitness, so ESS-EA
uses the method of sampling the members of schemata a
fixed finite number of times. One effect of the addition of
midpoints and estimating their schematic fitness is a slight
smoothing of the landscape because there will be interpo-
lated midpoints through which an individual may pass on
its way from a local maximum to the global maximum. An-
other effect of interpolation is that the search space becomes
exponentially larger, and this is more pronounced for QEA
than for the coarser interpolation given by ESS-EA.

3. PIRHLEA
Given a bit-string function to be optimized, one replaces

the domain by strings of values from [0,1]. This transforma-
tion can be interpreted as enlarging the domain of hypercube
vertices by replacing them with a solid hypercube, and one
must define the fitness of individuals that have coordinates
other than zero or one.

For each point in the solid hypercube domain, a sample
vertex is randomly chosen by the following method. For each
dimension, choose one with probability equal to the rational
value originally in that position, and choose zero otherwise.
Thus, the closer the point is to a face of the hypercube, the
higher the probability of a vertex on that face being chosen
as in Figure 1. The number of sample vertices chosen can be
a fixed parameter of the algorithm, and the average over that
number of samples is used for the fitness of individuals in
the solid hypercube domain. Reproduction in a PIRHLEA
can be done as one would for any EA with a solid hypercube
domain: mutation and recombination by crossover may be
used, for example.

To see that no new local extrema arise in the enlarged
search space, observe that the expected value of the fitness
for an individual inside the solid hypercube is just a lin-
ear weighted average of the expected value of the fitness
for individuals on opposite faces of the hypercube that are
projections of the individual in the interior.

Pr(0,0) = 1/8

Pr(1,1) = 3/8

Pr(1,0) = 3/8

Pr(0,1) = 1/8

(x, y) = (3/4, 1/2)

Probability Distribution

of Individual at

Figure 1: With QEA and PIRHLEA, an individual

may be located in the solid hypercube.

4. CONCLUSIONS
This paper introduces PIRHLEA, a novel generalization

and simplification of the QEA. The impetus for this research
is to improve EA performance on rugged binary fitness land-
scapes by employing interpolation to smooth the landscape.
The first attempt resulted in the ESS-EA, which employs
schemata to interpolate the fitness on a hypercube land-
scape, and this interpolation should make migration away
from local extrema at the hypercube vertices easier for indi-
viduals in the population.

The strategy for ESS-EA finally merged with that of QEA,
producing PIRHLEA, which uses arbitrarily dense interpo-
lation. However, the synthesis of these two approaches may
improve upon both earlier algorithms. Empirical studies
should be carried out to substantiate this potential. At
worst, PIRHLEA does simplify and generalize QEA by re-
laxing the connection to quantum mechanics while preserv-
ing enough of the framework to capture its essential features.
As a result, one can expect easier and more efficient imple-
mentations as well as better visualization of the algorithm
performance on the enlarged domain of a solid hypercube;
the potential benefit of PIRHLEA’s more general sampling
method also needs to be empirically investigated.
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