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ABSTRACT

Wheel-legged hybrid robots are versatile machines that can
employ several locomotion modes; however, automatically
choosing the right locomotion mode is still an open problem
in robotics. We here propose that the robot autonomously
discovers its locomotion mode using a multi-objective evo-
lutionary optimization and a fixed internal model. Three
objectives are optimized: (1) the displacement speed com-
puted with the internal model, (2) the predicted expended
energy and (3) the transferability score, which reflects how
well the behavior of the real robot is in agreement with the
predictions of the internal model. This transferability func-
tion is actively learned by conducting 20 experiments on the
real robot during the optimization. We tested this approach
with a wheel-legged robot in three situations (flat ground,
grass-like terrain, tunnel-like environment): in each case, the
evolutionary algorithm found efficient controllers for forward
locomotion in 1 to 2 minutes.
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1. INTRODUCTION
Wheel-legged robots aim at combining the efficiency of

wheeled robots with the versatility of legged robots[3, 4,
5]: by adding wheels at the end of legs, they can act like
wheeled robots on simple terrains and adapt their posture
to the shape of an uneven ground; they can also stop their
wheels and be equivalent to a classic legged robot. A few pa-
pers investigate different locomotion modes, such as rolling
with passive wheels and walking[3]. Nevertheless, none of
them tackles one of the most important questions: how

should the robot select its locomotion mode? And, since there
are an infinity of possible situations and an infinity of hy-
brid locomotion modes, how to discover the best controller
in an unforeseen situation? The present paper introduces
an evolutionary-based adaptation algorithm to answer these
two questions. In the typical scenario, the robot first moves
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on a flat terrain, in which using the wheels is a priori effi-
cient; the robot then encounters a tall grass field in which
its wheels are not working anymore: it has to find a new
locomotion mode; finally, it leaves the grass field and en-
ters a tunnel with a low ceiling that should never be hit: a
new adaptation is required. This scenario illustrates three
situations but the goal of the present paper is to introduce
a general adaptation algorithm that could be used in any
situation and for any robot.

2. PROPOSED APPROACH
If a robot is in a situation that has never been encountered

before, the best thing it can do is to evolve a new strategy by
itself. Such a situation is a typical use case of reinforcement
learning[6] or optimization-based learning[9], but these al-
gorithms require a large number of trials on the real robot,
making the learning phase long1 and potentially dangerous.
The Estimation-Exploration Algorithm[1] proposes a faster
alternative which relies on an automatically learned, inter-
nal dynamic model of the robot: using it, a star-shaped
quadruped robot only needed to perform 15 simple actions
to learn a new walking behavior after the loss of a leg. How-
ever, each time a disagreement is detected between the inter-
nal model and the reality, the EEA requires to learn a new
internal model from scratch; we think that this complex step
is inefficient if the disagreement stems from a change of the
environment (most parts of the internal model should still
be reliable) and not from a change in the morphology of the
robot. Additionally, actions performed by the robot are not
goal-directed: the robot can spend a long time to model a
part of its morphology which is useless for its goal.

To overcome these limitations, we propose to rely on a
similar dynamic internal model, except that it will be pro-
vided by the robot’s designer. In our approach, the evolu-
tionary algorithm will not modify this model but it will dis-
cover what potentially interesting behaviors are not working
properly in reality and it will avoid them. To do so, we take
inspiration from the transferability approach[7] by formulat-
ing the problem as a three-objective optimization process:

maximize







AvgSpeed(x)
−Energy(x)
Transferability(x)

where x is a candidate controller, AvgSpeed(x) is the aver-
age displacement speed of the robot in the internal model,

1about 3 hours to learn a quadruped locomotion pattern
for the Aibo robot[6] and about 20 minutes for a snake-like
robot[9].
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Figure 1: Typical selected behaviors: (left) flat
ground: rolling behavior; (center) grass-like: walk-
ing behavior; (right) tunnel: rolling behavior with a
lowered body.

Table 1: Average speed (cm/s) for each controller
and in each situation, standard deviations (5 trials)
are in brackets; energy is in arbitrary unit.

tested ona
a
a
a
aaoptim. on

flat ground grass tunnel energy

flat ground 17.1 (0.3) 0.0 (0) 8.6 (9.9) -26 (3)
grass 13.1 (1.9) 13.1 (1.9) 8.3 (7.6) -33 (1)
tunnel 15.9 (1.7) 0.0 (0) 15.9 (1.7) -27 (2)

Energy(x) is an estimation of the energy required to per-
form the behavior (walking uses more energy than rolling)
and Transferability(x) is an approximate function which
reflects how well the reality matches the prediction of the
internal model for the controller x [7]. This last function is
approximated by transferring a few well-chosen controllers
on the real robot (during the optimization) and subsequently
comparing the behaviors in simulation and reality.

The three objectives are optimized simultaneously with
NSGA-II, a state-of-the art multi-objective evolutionary al-
gorithm[2]. This optimization algorithm finds an approxi-
mate set of all Pareto-optimal trade-offs; to select the final
controller, we choose the solution whose distance to the ideal
point is minimal among the solutions whose transferability
values are higher than a pre-defined threshold[7].

3. EXPERIMENTAL RESULTS
We tested this new approach on a wheel-legged robot in-

spired by the Hylos robot[4] (figure 1). We investigated three
situations to which the robot has to adapt: (1) a flat ground,
(2) a grass-like environment (in which wheels are not work-
ing at all) and, (3) a tunnel-like environment (in which the
maximum height of the robot is constrained). In each case,
we allowed 20 tests in reality. The average speed of the
robot was evaluated with a motion tracking system but fur-
ther work will rely on on-board visual odometry[8]. The
transferability function was the opposite of the variation of
average speeds measured with the internal model and on the
robot. The control of the 12-DOFs robot is based on sinu-
soids, which are parametrized by 3 real numbers: speed of

the four wheels, robot’s initial posture and movement am-
plitude of the legs. The goal of the evolutionary algorithm is
therefore to find the optimal value of these parameters while
taking into account environmental constraints. Energy is
crudely approximated by summing the angular movement
of each degree of freedom. To obtain statistical results, we
performed 5 experiments in each situation.

Results (figure 1) show that: (1) the robot autonomously
chose to use its wheels when it was put on a flat ground, (2) it
optimized a walking gait when its wheels were unusable and,
(3) it lowered its body when it encountered the tunnel. Each
optimization phase required 1 to 2 minutes with a recent
multi-core computer (including the tests on the robot). Ta-
ble 1 reports quantitative results: the rolling behavior found
on flat ground cannot be used on grass (average speed is null)
and is often useless in the tunnel (average speed is low: many
controllers did not work), but it is the most energy-efficient
controller; the walking mode requires more energy but it ap-
pears more versatile; the controllers optimized for the tun-
nel use slightly more energy than those optimized for flat
ground because the robot has to lower its body. These mea-

sures show that adapting the locomotion mode was always

useful and often mandatory for the robot to move forward.
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