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ABSTRACT
Evolutionary algorithms have been used to effectively gen-
erate solutions to artificial life problems. However, this pro-
cess may take a number of generations to complete. Re-
search to accelerate evolutionary search has been reported,
yet, insights into this evolving process have not been an-
alyzed nor why certain characteristics are more dominant
than others. This paper provides a systematic and causal
explanation for these findings and why certain genes are su-
perior. We use Bayesian Networks (BNs) to learn a graphi-
cal model to represent the learning process in the Artificial
Life environment. BAyesian Network ANAlysis (BANANA)
is then developed, which gives visual representation of the
inter-connections among these characteristics and provides
information for further insight into genetic fitness.

Categories and Subject Descriptors
I.2.m [Artificial Intelligence]: Miscellaneous; G.3 [Proba-
bility and statistics]: Experimental design; G.4 [Mathe-
matical software]: Algorithm design and analysis

General Terms
Experimentation, Algorithms, Design

Keywords
Evolutionary Algorithms, Bayesian Networks, Learning

1. INTRODUCTION
Traditionally, evolutionary algorithms have been used to

effectively generate solutions to certain problems; evolution-
ary theory reveals strong genetic characteristics. However,
this process takes a number of generations to complete; be-
ing trapped in local optima is a typical shortcoming in evolu-
tionary algorithms. To exclusively research the entire solu-
tion space can avoid local optima, but this is time consum-
ing. Research to accelerate evolutionary search has been
reported with promising results[1]. However, this evolving
process has not been analyzed nor why certain characteris-
tics are more dominant than others.

This paper provides a systematic and causal explanation
why these are solutions found and why certain genes are su-
perior. We use Bayesian Networks (BNs) to learn a graphical
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model to represent the learning process arising in the Arti-
ficial Life environment. This gives a visual representation
of the inter-connections among these characteristics, which
provides information learned for further insight into genetic
fitness.

Bayesian networks [2] are graphical models which can re-
veal the hidden relations among various features and intu-
itively provide the causal connections in numerical datasets.
We use Bayesian networks to analyze the obtained informa-
tion and learn the causal/hidden relations among features.
First, we simulate an artificial life environment, where two
species compete to survive over n-generations. This simu-
lation provides a useful and unique set of meaningful data,
based on ALGAE (Artificial Life Genetic Algorithm Expres-
sion), and also simplifies the complexity for later analysis.
Moreover, a graphical model can be learned to describe var-
ious hidden connections among “genes” derived from simu-
lated genotype data to reveal what the critical factors/inter-
connections are.

In ALGAE, the process of two tribes of agents explor-
ing the environment and competing for resources available
is taken as a random choice of action according to each indi-
vidual’s characteristics. This randomness does not contain
any intelligence; rather the superior genetic characteristics
are carried over and survive in the descendents. Our re-
search explore using the factor analysis results of Bayesian
Networks learning for each individual agent, in order to learn
rational strategies to obtain optimal gain in a competitive
multiagent environment.

2. BACKGROUND
To explore the hidden dependencies among the variables,

Bayesian Networks are used to analyze genotype data de-
rived from simulated evolutionary processes and provide a
graphical model to describe connections among genes. There
are a number of models available for data analysis such as ar-
tificial neural networks, decision trees, factor analysis, BNs,
and so on. Yet BNs have distinct advantages as analytical
methods which can discern hidden relationships among vari-
ables. Two main approaches, constraint-based and score-
based, have been used to learn BN structure. However, both
suit either sparse structures or dense structures. Firstly, a
hybrid algorithm, called “the E-algorithm” [4, 3], is intro-
duced to complement the benefits and limitations in both
approaches for BN structure learning. Testing the E-algorithm
against a standardized benchmark dataset ALARM, sug-
gests valid and accurate results. BAyesian Network ANAl-
ysis (BANANA) is then developed which incorporates the
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E-algorithm to analyze the genetic data from ALGAE. The
resulting BN topological structure with conditional proba-
bilistic distributions reveals the principles of how survivors
adapt during evolution, producing an optimal genetic profile
for evolutionary fitness [5].

3. ALGAE
In order to answer these questions, we simulate an artifi-

cial life environment as a simple ecology system, ALGAE.
ALGAE describes two species which compete for resources
to survive, where each individual is represented as an artifi-
cial 32-bit chromosome. Each chromosome is a combination
of individual genetic characteristics, which determine the
survival ability in the environment. (see Table 1 for details)

Table 1: 32-bit chromosome descriptors
Gi Description Bits Gi Description Bits
SP SPecies type 0 CA Action Character. 13-15
SL Life Span 1-4 CR Capricious Rate 16-18
VF Vision Field 5-6 SA Attack Speed 19-21
TM Transition Movemt. 7-8 DA Defend Ability 22-24
CM Motion Character. 9-11 LA Attack Loss 25-27
LM Motion Loss 12 EF Food Efficiency 28-31

4. BANANA
The simulation ALGAE records the generational evolu-

tion over lengthy time frames. With the record of this
evolutionary process, we next examine how these remain-
ing species genetic descriptors correlate to ensure successful
survival (see Figure 1).

Figure 1: 32-bit chromosome

In Figure 2, we use BANANA to learn a graphical repre-
sentation of the relations among the gene descriptors. The
E-algorithm within BANANA is a hybrid BN structure learn-
ing algorithm which combines constraint-based and MDL
score-based methods. This graphical representation reveals
these 12 descriptors with 26 connections among them, show-
ing that: a) Defense ability (DA) is the major factor in
survival (with 8 arcs/constraints); b) Energy lost in fighting
(LA) is the secondary important factor (with seven arcs/con-
straints); c) The relationships and dependencies also indi-
cate that speedy attack ability (SA), and the energy cost of
survival (EF) (with six arcs each) are key constraints/factors.

We therefore see that combat occupies a central role, and
there are different levels of importance of each gene, in a
hostile environment with competition for survival. The BN
reveals this hidden rule of survival embedded in ALGAE.
That is, only certain gene combinations will allow a species
to survive. Defense comes first, while attack skills or energy
status affect the ’battle period’.

A successful individual’s gene composition does not ex-
plain the reason for its success. The data merely reveals the
principle; however, BN describes the causal relations among

Figure 2: Bayesian Networks Representation for ALGAE

the factors and how these connections influence the way the
whole diagram works. The BN shows the reality of why
these species could continue to live and thrive.

5. CONCLUSION AND FUTURE WORK
This causal relationships are revealed by Bayesian analy-

sis to individuals survival ability in ALGAE. Applying this
knowledge to individuals can accelerate the solution search
process, while increasing individual survivability. “Re-attack
with choice” refers to the situation where each individual
performs in the environment to compete for survival with
learned knowledge from their ancestors. This knowledge de-
scribes the critical factors and how these factors influence
the survival outcomes. Initial research on Bayesian networks
gives promise to the prediction ability in an uncertain envi-
ronment. Applying these constraints which exist among var-
ious factors in the multiagent environment, this will give an
analytical choice based on known effects, rather than mere
random exploration.
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