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ABSTRACT

We focus on parallel-processing effect for Sudoku-solving
and we show that diversifying initial values can reduce the
Sudoku solution time. In an experiment using the commer-
cially available Intel Corei7 multi-core processor, we show
that a correct solution rate of 100% can be achieved with
an average execution time of several tens of seconds even for
super-difficult problems.
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1. INTRODUCTION

Sudoku[5], a pencil and paper puzzle, is considered as a
large combinatorial optimization problem. We have pro-
posed genetic operations that consider effective building blocks
for using genetic algorithms to solve Sudoku puzzles[3]. How-
ever the processing time was still very poor compared to the
backtracking algorithm.

We aim to show that the parallelization of genetic comput-
ing in a many-core processor environment using a GPU or
multi-core processor can be used for tackling practical prob-
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forming to POSIX specifications [1] on homogeneous multi-
core processors.

2. SUDOKU SOLUTIONS USING GENETIC
OPERATION

To solve Sudoku problems by GA operations in realis-
tic time, we have proposed a crossover operation that takes
building-block linkage into account by defining 9 x 9 two-
dimensional arrays as the GA chromosom[3]. Mutations are
also performed for two numerals within a sub-block that are
not given in the starting point and selected randomly and
their positions are swapped. In addition to these operations,
we have added only a simple local search function in which
multiple child candidates are generated when mutation oc-
curs, and the candidate that has the highest score is selected
as the child. These experiments use tournament selection.
The fitness function, Eq. (1), is based on the rule that there
can be no more than one of any numeral in a row or column.
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The score is the number of different elements in a row (g;) or

column (h;), and the sum of the row and column scores is the
score for the individual. Here, |k| indicates the number of
different numerals in a particular row or column. Therefore,
maximum score of the fitness function f(z) becomes 162.
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Figure 1: The GA operation that takes linkage into account
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Figure 2: Parallel GA model for homogeneous multi-core 2 93 46999 40s 43
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Table 1: The specifications of execution environment
CPU Intel Corei7 920 (2.67GHz, 4cores)
0S Ubuntu 10.04

C compiler gce 4.4.3 (optimization “-O3")

3. PARALLEL GA MODEL
AND IMPLEMENTATION
ON MULTI-CORE PROCESSORS

From the consideration of our previous study[3], a Sudoku
solution using genetic computations is dependent on the ini-
tial value when a sufficient number of individuals cannot be
set due to insufficient memory capacity or other constraints.
With this in mind, we generate the same number of threads
as cores in the target processor and propose a method that
executes genetic operations with each core having a different
initial value. We also adopt the value of the core that finds
a Sudoku solution first. Fig. 2 shows this parallel GA model
for multi-core processor.

The procedure of the parallel GA model at each core pro-
cessor is as follows.

(a) All individuals are randomly generated on each core.

(b) The GA operation is repeated until the termination cri-
teria are satisfied.

(c) The core that finds a Sudoku solution first cancels the
operations on the other cores.

4. EVALUATION EXPERIMENTS

We varied the number of threads to be executed in parallel
from 1 to 8 and evaluated (1) solution rate, (2) average num-
ber of generations until the correct solution was obtained,
and (3) average execution time. The environment shown in
Table 1 is used as an execution platform. We performed the
experiment by executing a maximum of 8 threads in parallel
using Intel hyper-threading technology|2].

We used the particularly difficult Sudoku puzzles SD1,
SD2 and SD3 introduced by Timo Mantere in reference [4].
The results are presented in Tables 2. The values shown in
the results are the averages for 100 experiments that were
conducted with 150 individuals and a cut-off of 100,000 gen-
erations. Our experimental parameters are as follows: pop-
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ulation size is 150, crossover rate is 0.3, mutation rate is 0.3
and tournament size is 3.

From Table 2, we can see that increasing the number of
threads reduces the execution time and increases the correct
solution rate. In other words, the problem of initial value
dependence tends to be eliminated as the number of threads
is increased for both the processing time and the correct
solution rate.

S. CONCLUSIONS

We proposed a parallel-processing effect for solving of Su-
doku puzzles by genetic computation with the aim of using a
many-core processor. Evaluation results showed that a cor-
rect solution rate of 100% can be achieved with an average
execution time of several tens of seconds even for super-
difficult problems on Intel Corei7, a commercially-available
multi-core processor. In future research, we apply the pro-
posed technique to problems of even larger scale and to ex-
periment on many-core processors incorporating even more
cores to shorten execution time.
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