Acceleration Experiment of

Genetic Computations for

Sudoku Solution on Multi-core Processors

Mikiko Sato Yuji Sato Mitaro Namiki
Graduate School of Faculty of Computer and Institute of Engineering
Engineering Information Sciences Tokyo University of Agriculture
Tokyo University of Agriculture Hosei University and Technology
and Technology Tokyo Tokyo
Tokyo, Japan Japan Japan

mikiko@namikilab.tuat.ac.jp

ABSTRACT

We focus on parallel-processing effect for Sudoku-solving
and we show that diversifying initial values can reduce the
Sudoku solution time. In an experiment using the commer-
cially available Intel Corei7 multi-core processor, we show
that a correct solution rate of 100% can be achieved with
an average execution time of several tens of seconds even for
super-difficult problems.

Categories and Subject Descriptors
J.0 [Computer Applications]: General

General Terms

Design, Experimentation, Performance, Verification

Keywords

Genetic Algorithms, Evolutionary Computation, Multi-core
Processor, Parallel Computing

1. INTRODUCTION

Sudoku[5], a pencil and paper puzzle, is considered as a
large combinatorial optimization problem. We have pro-
posed genetic operations that consider effective building blocks
for using genetic algorithms to solve Sudoku puzzles[3]. How-
ever the processing time was still very poor compared to the
backtracking algorithm.

We aim to show that the parallelization of genetic comput-
ing in a many-core processor environment using a GPU or
multi-core processor can be used for tackling practical prob-

yuji@k.hosei.ac.jp

namiki@cc.tuat.ac.jp

forming to POSIX specifications [1] on homogeneous multi-
core processors.

2. SUDOKU SOLUTIONS USING GENETIC
OPERATION

To solve Sudoku problems by GA operations in realis-
tic time, we have proposed a crossover operation that takes
building-block linkage into account by defining 9 x 9 two-
dimensional arrays as the GA chromosom[3]. Mutations are
also performed for two numerals within a sub-block that are
not given in the starting point and selected randomly and
their positions are swapped. In addition to these operations,
we have added only a simple local search function in which
multiple child candidates are generated when mutation oc-
curs, and the candidate that has the highest score is selected
as the child. These experiments use tournament selection.
The fitness function, Eq. (1), is based on the rule that there
can be no more than one of any numeral in a row or column.

9

f@) =3 gie

i=1

(9i () = |zil,

+>h@ 1)
i(z) =

(z) = |z;)

The score is the number of different elements in a row (g;) or

column (h;), and the sum of the row and column scores is the
score for the individual. Here, |k| indicates the number of
different numerals in a particular row or column. Therefore,
maximum score of the fitness function f(z) becomes 162.

)
h’]

lems in realistic times, even for problems for which the use of pa— | b 1 _______________ ~T5Tals
genetic computing has not been investigated previously be- 11 11 1y I — a1 s
cause of the processing time problem. The use of multi-core T]j&l
processors has recently expanded to familiar environments Tgtrjt1jza)2f2]2 @ """"""""""""" 3712
like desktop PCs and laptop computers, and it has become 11 1|26 [2]2]| 2] Sub-block
easy to experiment with parallelization programs on multi- 27) 25 24 25 23/ 25 @\/Iutaﬁon
core processors through thread programming. Therefore, as ~ Crossover } Column Score
one of the approaches to achieve our goal, we take the prob- chld child2 ™
lem solving Sudoku puzzles and investigate acceleration of 1t / 112 @ 4 @
the processing by general-purpose thread programming con- 21212 112 8|1|5
frowp [T] |1 102]2] (coumn) 317 |2

Copyright is held by the author/owner(s).
GECCO’11, July 12-16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

823

Figure 1: The GA operation that takes linkage into account

master-corel | slave-corel | slave-core2 _ i
A operations Table 2: The rate of correct answers, the number of average
@] generations, and the average execg’tion time <
—— es Number of | Count verage verage
— — — d Threads [%] | Generation | Exec. time
- SD1 1 94 32858 22s 19
‘ermination q
6a aa ca = 2 100 15268 135 87
operations |i| operations |i| operations no géc:g’gmer 1 100 7694 135 11
operetion 8 100 3527 7s 39
end SD2 1 82 42276 28s 41
| 2 98 25580 225 43
[Join Threads | 1 100 13261 91s 47
chitnae 8 100 5992 125 12
SD3 1 69 60157 39s 88
Figure 2: Parallel GA model for homogeneous multi-core 2 93 46999 40s 43
Processors 4 100 19982 30s 79
8 100 8795 175 13

Table 1: The specifications of execution environment
CPU Intel Corei7 920 (2.67GHz, 4cores)
0S Ubuntu 10.04

C compiler gce 4.4.3 (optimization “-O3")

3. PARALLEL GA MODEL
AND IMPLEMENTATION
ON MULTI-CORE PROCESSORS

From the consideration of our previous study[3], a Sudoku
solution using genetic computations is dependent on the ini-
tial value when a sufficient number of individuals cannot be
set due to insufficient memory capacity or other constraints.
With this in mind, we generate the same number of threads
as cores in the target processor and propose a method that
executes genetic operations with each core having a different
initial value. We also adopt the value of the core that finds
a Sudoku solution first. Fig. 2 shows this parallel GA model
for multi-core processor.

The procedure of the parallel GA model at each core pro-
cessor is as follows.

(a) All individuals are randomly generated on each core.

(b) The GA operation is repeated until the termination cri-
teria are satisfied.

(c) The core that finds a Sudoku solution first cancels the
operations on the other cores.

4. EVALUATION EXPERIMENTS

We varied the number of threads to be executed in parallel
from 1 to 8 and evaluated (1) solution rate, (2) average num-
ber of generations until the correct solution was obtained,
and (3) average execution time. The environment shown in
Table 1 is used as an execution platform. We performed the
experiment by executing a maximum of 8 threads in parallel
using Intel hyper-threading technology|2].

We used the particularly difficult Sudoku puzzles SD1,
SD2 and SD3 introduced by Timo Mantere in reference [4].
The results are presented in Tables 2. The values shown in
the results are the averages for 100 experiments that were
conducted with 150 individuals and a cut-off of 100,000 gen-
erations. Our experimental parameters are as follows: pop-

824

ulation size is 150, crossover rate is 0.3, mutation rate is 0.3
and tournament size is 3.

From Table 2, we can see that increasing the number of
threads reduces the execution time and increases the correct
solution rate. In other words, the problem of initial value
dependence tends to be eliminated as the number of threads
is increased for both the processing time and the correct
solution rate.

S. CONCLUSIONS

We proposed a parallel-processing effect for solving of Su-
doku puzzles by genetic computation with the aim of using a
many-core processor. Evaluation results showed that a cor-
rect solution rate of 100% can be achieved with an average
execution time of several tens of seconds even for super-
difficult problems on Intel Corei7, a commercially-available
multi-core processor. In future research, we apply the pro-
posed technique to problems of even larger scale and to ex-
periment on many-core processors incorporating even more
cores to shorten execution time.

6. REFERENCES

[1] IEEE. ISO/IEC 9945-1 ANSI/IEEE Std 1003.1, 1996.

[2] Intel Technology Journal(Hyper-Threading
Technology). Hyper-threading technology architecture
and microarchitecture. Available via WWW:
http://download.intel.com /technology/itj/2002/volume
06issue01/art01 hyper/vol6issl artO1.pdf.

[3] Y. Sato and H. Inoue. Solving sudoku with genetic

operations that preserve building blocks. In

Proceedings of the IEEE COnference on Computational

Intelligence in Game, pages 23-29, 2010.

Super difficult Sudoku’s. Available via WWW:

http://lipas.uwasa.fi/ timan/sudoku/EA _ht 2008.pdf

#search="CT20A6300%20Alternative%20Project

%20work%202008’. cited 8.3.2010.

[5] Wikipedia. Sudoku. Available via WWW:
http://en.wikipedia.org/wiki/Sudoku. cited 8.3.2010.

[4]

