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ABSTRACT 
In this paper an innovative fuzzy-genetic approach is proposed to 
address the problem of analog circuit sizing. The proposed 
approach introduces a fuzzy mutation operator which models 
expert design knowledge and this way not only avoids local 
minima but also reduces the search dynamically the space. The 
proposed approach is compared against a state-of-the-art genetic 
approach, for the optimal operational amplifier sizing, and 
presents a faster convergence rate.  

Categories and Subject Descriptors 
J.6 [Computer-Aided Engineering]: Computer-aided design 
(CAD)  

General Terms 
Algorithms, Design, Performance  

Keywords 
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1. INTRODUCTION 
Designing complex analog and mixed-signal circuits and systems 
is a complex and cumbersome task that requires extensive design 
expertise. Despite the evolution of design automation approaches 
in the last decades, most of the designer effort in the synthesis of 
an analog system is still dedicated to circuit sizing in order to 
satisfy a set of predefined performance specifications and 
parameters constraints. Thus, the development of new design 
automation procedures to improve the design efficiency is 
mandatory [1]. 

Recent approaches [2-4] to analog design automation show an 
enormous potential of applying soft computing techniques to 
circuit, system and layout level synthesis, due to their capability 
of evolving solutions on large search spaces associated to either 
linear or non-linear design problems.  

This work applies a fuzzy-genetic optimization kernel to the 
analog circuit design flow, particularly, to an optimization based 
architecture, illustrated in fig. 1, and using a standard electrical 
simulator as evaluation engine allowing both precise evaluations 
and generalized application to a broad range of circuit topologies. 

2. FUZZY-GENETIC OPTIMIZATION 
BASED APPROACH 
The proposed IC design optimization approach starts by building 
a coarse fuzzy model, which describes qualitatively the 
contribution of each optimization variable, a subset from the 
whole optimization variables selected by the designer, to the 
performance parameters or measures. This model will then be 
stored together with the circuit description, in a circuit database, 
and will be used during the evolutionary optimization process to 
implement the mutation operator.  

2.1 Modeling Kernel 
The modeling kernel, illustrated in fig. 1, is the module dedicated 
to generate the models, in this case, the fuzzy model. In order to 
build the fuzzy model a search space sampling is performed using 
the Design of Experiments (DOE) approach. Then, the samples 
are evaluated based on precise electrical simulations obtained 
with HSPICE. Then, the fuzzy rules are defined based simulations 
results and their general form is given by if-then rules, as the 
following: “If input is low then output is max”, where low and 
max are membership function terms. After defining the fuzzy 
rules the modeling kernel implements a fuzzy inference 
mechanism, based on a MAX-MIN strategy and a defuzzification 
process based on the center-of-area approach. Finally, the 
returned results by the fuzzy model are of three different types, 
respectively: (1) increase the optimization variable value; (2) 
decrease the optimization variable value; (3) generate a new 
random value. 

 

 

Figure 1. Optimization Based Approach. 
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2.2 Optimization Kernel 
The optimization kernel, illustrated in fig. 1, is based on an 
evolutionary computation approach, published in [4] and 
extended by introducing a new mutation operator, illustrated in 
fig. 2. The new mutation operator in step of just introducing a 
pure random change on a selected gene, the classical approach, it 
uses the built-in fuzzy model to determine how the variable, 
represented by the selected gene, should change in order to 
increase the probability of improving the solution. The main point 
is that the overall search space is dynamically reduced and the 
population receives knowledge information during the 
evolutionary process, which results in orienting the population 
movements towards the solution area with a direct impact in terms 
of a reduction in both the number of evaluations and generations 
required to obtain the solution. 

 

Figure 2. Selective Fuzzy Mutation Operator. 

3. CASE STUDY 
In order to demonstrate the effectiveness of the proposed 
approach a classical two-stage operational amplifier, illustrated in 
fig. 3, were considered as benchmark. In this case study the 
technology used were 0.35 μm AMS (Austria Mikro Systems 
International AG) CMOS technology process with a supply 
voltage of 3.3V. However the proposed approach is fully 
independent from both circuit topology and technology.  

The circuit is composed by 16 devices from where 10 
optimization variables and 30 constraints were considered. The 
design parameters, optimization variables, are within the 
following ranges Ws [1, 400, 1] and Ls [0.35, 10, 0.1] expressed 
in m. The parameters to define these are minimum, maximum 
and step size. The constraints consist of overdrive voltages and 
drain-sources voltages margin to guarantee the proper circuit 
behavior. Finally, the desired specifications or design goals were 
the ones described in table 1.  

The achieved results were compared against a state-of-the-art 
approach [4]. The results, compiled in table 2, show a success rate 
of 10 out of 10 for both the reference approach and the proposed 
approach. Then, the proposed approach reduces the required 
number of generations in about 1/3 and the number of evaluations 
in about 1/4 for an extra cost in terms of computational time of 
less than 1/3. The extra computational cost is due to the fuzzy 
mutation operator which will be easily diluted for more complex 

circuits and/or analysis where the electrical simulations can take a 
substantial amount of time when compared to the execution of the 
algorithm. 
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Figure 3. Two-Stage OpAmp. 

 

Table 1. Two-Stage Opamp Specs 

Id Gain GBW Phase Power 

TS OpAmp   > 65 dB >20 MHz 60º<Ph<90º Min (mW) 
 

Table 2. Comparative Results against a State-of-the-Art 
Optimization Kernel applied to Analog IC Sizing 

Measure\Algorithm GA-MOD2 GA-FUZZY 

Success Rate  10/10 10/10 
Generation Avg 31.3 21.1 
nEval Avg 282.4 200.8 
Time Avg (s) 8.7 11.8 

 

4. CONCLUSIONS 
A new fuzzy-genetic optimization kernel were introduced, 
embedded in an analog IC design flow using electrical simulators 
as evaluation engines and tested against a state-of-the-art 
optimization kernel. The presented case study shows extremely 
promising results for analog circuit benchmarks anticipating good 
performances for more complex circuit topologies and analysis.  
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