
How Many Dimensions in Co-Optimization?

Wojciech Jaśkowski
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ABSTRACT
Co-optimization test-based problems is a class of tasks ap-
proached typically with coevolutionary algorithms. It was
recently shown that such problems exhibit underlying ob-
jectives that form internal problem structure, which can be
extracted and analyzed in order to drive the search or design
better algorithms. The number of underlying objectives is
the dimension of the problem, which is of great importance,
since it may be a predictor of problem’s difficulty. In this
paper, we estimate the number of dimensions for Tic Tac
Toe and the Density Classification Task.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Search]: Heuristic methods

General Terms
Algorithms
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1. INTRODUCTION
A co-optimization test-based problem consists of a set of

candidate solutions (candidates) S, a set of tests T and an
interaction function G : S × T → V . The goal of the prob-
lem is to find the best candidate in S with respect to some
preference relation. T is usually large, thus computing the
vector of all interaction outcomes for a given candidate is
infeasible, making the problem hard to tackle.

A promising direction of research in this field involves ex-
tracting internal multi-objective structure of a test-based
problem [5], which could help designing better coevolution-
ary algorithms [2] and examining problem properties [3]. To
the best of our knowledge, all of previous research in extract-
ing internal problem structure was done either on artificial
number games [1] or a very small version of Nim [3]. Here
we examine more complex test-based problems and try to
estimate how many dimensions such problems have.

To this aim we consider Bucci’s definition of coordinate
system [1], which models the internal structure of a problem.
Using GreedyCover heuristic [4], we estimate the number
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of dimensions of two problems: Tic Tac Toe and the Density
Classification Task.

2. METHODS
In the context of test-based problems, a coordinate sys-

tem [1] is a formal concept revealing the internal problem
structure by enabling candidates and tests to be embedded
in a multidimensional space. It is defined for problems with
binary outcome V = {0, 1}, thus a candidate can only fail
or solve a test. An axis of a coordinate system (interpreted
as an underlying objective) consists of tests ordered by the
dominance relation. A candidate is positioned in the space
spanned by such axes, so that its dominance cone contains all
tests it solves. A coordinate system is correct if it preserves
all dominance relations between candidates defined by the
interaction function G [4]. Of particular interest are correct
coordinate systems of minimal number of axes, which give
rise to the notion of dimension of test-based problem.

Given S, T and G, our GreedyCover heuristic [4] finds
a correct coordinate system.

3. EXPERIMENTS
It was shown [4] that the dimension of a random test-

based problem (a random n×n payoff matrix) grows with a
logarithm of the problem size n (see Fig. 1), which indicates
that the compression provided by underlying objectives may
be exponential with respect to |T |. In order to we verify how
this result generalizes to more complex test-based problems,
we performed experiments on two other problems: Tic Tac
Toe and Density Classification Task.

Tic Tac Toe (TTT).
Player’s X strategy is identified with a candidate while

player’s O with a test. The interaction function returns 0
for the candidate passing the test (win, draw) and 1 for
failing it (defeat). Strategies are encoded directly. TTT has
765 different board states (excluding rotated and reflected
ones), of which 627 are not final. In 338 states it is X’s turn
and in 289 O is to move. Thus, 338 and 289 genes define X
and O strategies, respectively. A gene encodes the move to
play in one state. The total number of strategies is roughly
3.47× 10162 for player X and 2.82× 10142 for player O.

Density Classification Task (DCT).
The goal in this problem is to find a one-dimensional cel-

lular automaton rules that perform majority voting. We

829



0

10

20

co
m
p
u
te
d
d
im

en
si
on

0 50 100 150 200

problem size

GreedyCover

y(x) = 4.5ln(x)− 2.4

0

25

50

75

co
m
p
u
te
d
d
im

en
si
on

0 500 1000 1500

problem size

GreedyCover

y(x) = 12.6ln(x)− 31.6 (R2 = 0.93)

y(x) = 4.7x0.357 (R2 = 0.86)

0

500

1000

1500

co
m
p
u
te
d
d
im

en
si
on

0 2000 4000 6000 8000

problem size

GreedyCover

y(x) = 0.0049x1.35 (R2 = 0.98)

Figure 1: Dimension trends for random test-based
problem (upper), TTT (middle), DCT (bottom)

consider an instance of DCT with an initial configuration
size n = 31 and rule radius r = 2.

4. RESULTS
The number of strategies in both TTT and DCT is too

high to analyze the whole payoff matrix, thus we randomly
sampled strategies from the entire strategy space. We were
able to consider payoff matrices from 5 × 5 to 1885 × 1885
for TTT, and 10× 10 to 8200× 8200 for DCT. For each of
them, we used GreedyCover to compute the number of
dimensions.

Figure 1 shows the results of this procedure for TTT and
DCT. For TTT, two standard trend curves fit our data: a
power function y = 4.7x0.357 with R2 = 0.86; and a log-
arithmic one y = 12.62ln(x) − 31.6 with R2 = 0.93. The
difference between R2 coefficients is small, so there is not
enough evidence to confidently claim that the logarithmic
curve describes the dimension trend better. However, as
GreedyCover is a heuristic, the bigger the problem, the

more it overestimates the dimension, which may be an ar-
gument in favor of the logarithmic curve.

We use the trend to estimate the upper bound of the num-
ber of dimensions of TTT. Since we are unable to unambigu-
ously determine the trend function, we may make claims
only conditionally. If we assume that the power function
correctly determines the dimension trend, then extrapolat-
ing it to 3.47 × 10162 strategies yields roughly 5.0 × 1058

dimensions, however assuming that the logarithm function
provides better fit, we get approx. only 2038 dimensions.

For DCT, the data are best modeled by a power function
y(x) = 0.0047x1.35 with R2 = 0.98.

5. DISCUSSION AND CONCLUSIONS
Similarly to the random problem, the dimension trend for

TTT may be a logarithmic function, but it is clearly a power
function for DCT. We conclude that the relation between the
dimension of a problem sample and the size of the sample is
highly problem-dependent.

In multi-objective optimization, generally, the more ob-
jectives, the harder the problem. The same may hold for
test-based problems, as they can be interpreted as special
cases of multi-objective optimization problem. Hence, ran-
dom sampling in order to estimate the dimension trend may
be a tool of practical interest. In this light, TTT turns out
to be much easier than DCT.

Apart from that, we would like to point out that the popu-
larly used 2 or 3-dimensional number games (compare-on-all
and compare-on-one) are not representative as test-beds for
co-optimization problems, since, as we have seen for TTT or
DCT, the number of dimensions of real problems are much
higher. Thus, results on such simple number games could
not be generalized and can be misleading.
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