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ABSTRACT 
An artificial cell is a complex chemical system with many 
components fabricated and assembled in the laboratory. The 
molecular components can be designed to interlock in a variety of 
different way to achieve the emergence of minimal life [1][2]. 
One experimental design is composed of three modules or sub-
systems: lipid vesicles, a metabolic system and a cell-free 
expression system. Due to the high number of molecular species 
and their non-trivial interactions in an artificial cell any prediction 
of the emerging properties in this high dimensional space of 
compositions is extremely difficult. Previously we have 
developed and used a machine learning process Evo-DoE 
(Evolutionary Design of Experiments) coupled with a robotic 
workstation for liquid handling to optimize a liposomal drug 
formulation [3] as well as a cell-free expression system for the 
synthesis of the GFP (green fluorescent protein in vitro) [4]. In 
addition we have results of vesicle fusion providing a protocol to 
design a life-cycle for evolvable artificial cells. Now we propose 
how our technologies could be used to optimize artificial cells.  

Categories and Subject Descriptors 
Computer methodologies.  

General Terms: Algorithms, Design, Experimentation. 

Keywords: High throughput screening, fitness function, 
liposome, cell-free expression system, fusion, life-cycle. 

1. INTRODUCTION 
The optimization of a liposomal drug formulation [3] and the 
protein synthesis of a cell-free expression system [4] is driven by 
a machine learning process that can be engineered to adjusted 
parameters to obtain targeted properties. The experiments are 
conducted in iterative cycle, exploiting a neural network type 
algorithm, and the fitness function value is calculated every time 
the loop is closed. To start the optimization process, the 
experimental space is sparsely sampled with a random selection 
of experiments. Successively the models of the desired response 
from the experimental data are built, the next sparse sampling of 
the experimental space is designed - and the process repeats.  

Coupling experiments with statistical experimental planning and 
modeling, predictive algorithms can successful optimize desired 
chemical behaviors in large high-dimensional experimental 

spaces. To expand this technology to the design of an artificial 
cell, an additional level of complexity is necessary. The notion of 
a life-cycle, which consists of several steps and associated 
processes. However, we have already developed the key steps in 
an artificial cell cell-cycle based on vesicles fusion and cell free 
expression of proteins [5, 6, 7]. But these life-cycle steps are not 
yet appropriately integrated to account for a living system, which 
might be mitigated by utilizing the Evo-DoE machine learning 
process to tune the multiple involved processes.  

2. RESULTS 
Iterating our Evo-DoE machine learning algorithm, coupled to 
high-throughput experiments, a convergence of key variables are 
observed from generation to generation, and as consequence also 
the system’s fitness value increases. This approach has been 
verified for liposome drug design [3] and cell free protein 
synthesis [4].  

2.1 Optimization of cell-free expression 
system for in vitro protein synthesis 
As an example this section describes the results of optimization of 
a cell-free expression system where Evo-DoE is applied.  

The cell-free expression system is a commercial E. Coli cell 
extract with defined sets of components also used to express 
proteins inside the aqueous core of vesicles from DNA encoding 
molecules [8]. The system contains cellular components required 
for the transcription/translation of genes (T7 polymerase, 
ribosome, elongation factors, tRNA, etc.) and these components 
are adjusted at specific quantitative levels to obtain an efficient 
yield of synthesized protein in vitro. At the current stage of 
development, the efficiency of the cell-free expression system is 
low and limited to a narrow range of proteins and genes that can 
be expressed. The graph shown in figure 1, represents the 
experimentally measured evolutionary progress of the machine 
learning algorithm (Evo-DoE). The fitness function is defined as 
the maximum in fluorescence measured at different time intervals 
during the expression of the green fluorescence protein (GFP). In 
conclusion we were with our method able to obtain a 300 % 
improvement in protein yield, compared to a benchmark recipe. 
The predictive algorithm (Evo-DoE) indentified the optimal 
ingredients mixture in the designed experimental space.  
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Figure 1. From publication [4]. Progress of the evolutionary 
algorithm over eight generations is seen for the cell free protein 
expression system. Experimentally measured fitness. The 
standard is shown in blue and randomly chosen recipes in red. 
The light green represents the combinations chosen from the 
predictive model.  

2.2 Vesicles fusion dynamic towards the life-
cycle of artificial cells  
The relevance of a life-cycle to construct an artificial cell was 
previously described [9]. In particular the life-cycle is important 
as feeding mechanism to supply the system with fresh resources, 
to sustain compartmentalized in vitro to apply selection and 
ultimately evolution. In such contest the fusion of vesicles is a 
critical mechanism and it was successfully achieved through 
exploiting oppositely charged vesicle populations [5, 6, 7]. 
Recently we showed that adding appropriate electric charge to a 
suspension of pre-formed POPC vesicles induced mixing of their 
internal contents and activation of gene expression exploiting an 
encapsulated reconstituted cell-free expression system (data not 
shown). The internal mixing was evaluated using a fluorescence 
signal detectable with FACS (fluorescence activated cell sorter).   

 
Figure 2. Iterative life-cycle of vesicles fusion and fission is 
shown based on deposition of electric charge to pre-formed lipid 
vesicles. After the fusion the electric charge of the membranes is 
neutralized, thereby suitable for a new charging process after the 
fission.  

3. DISCUSSION 
So far we have not applied the Evo-DoE method for this cycle, 
but we aim to integrate our machine learning process to run the 
vesicle fusion cycle as illustrated in figure 2. The process 
presented is iterative and therefore suitable for evolutionary 
studies. We believe that this can be considered a useful strategy 

for the artificial cells design, by applying it to the turn-over of its 
building blocks, its up-take of essential molecules to sustains its 
metabolism as well as to measure evolution. 

4. CONCLUSION 
In this article we have presented experimental results from a 
machine learning process (Evo-DoE) coupled to a liquid high 
throughput robot that optimizes complex chemical systems. It has 
been demonstrated for optimal drug design [3] and cell free 
protein synthesis [4]. In addition, we have presented critical steps 
in an artificial cell cycle through controlled vesicle fusion and 
gene expression [5, 6, 7]. The involved sub-systems and modules 
are: the lipid membrane system, the cell-free expression system 
and the liposome life-cycle system. The last is used to provide 
resources to an internalized continuous in vitro evolution cycle 
(CIVE) [10]. In the future, the demonstrated efficiency of robotic 
workstation for liquid handling coupled with the statistical power 
of machine learning algorithms will be used for “mixing 
protocols” and to predict the emerging properties of artificial cells 
[2] from the very high-dimensional space of compositions. 
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