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ABSTRACT
A fast compression based technique is proposed, capable of
detecting promising emergent space-time patterns of cellular
automata (CA). This information can be used to automat-
ically guide the evolutionary search toward more complex,
better performing rules. Results are presented for the most
widely studied CA computation problem, the Density Clas-
sification Task (DCT), where incorporation of the proposed
method almost always pushes the search beyond the simple
block-expanding rules.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search

General Terms
Algorithms, Design, Theory

Keywords
cellular automata, density classification task

1. INTRODUCTION
Cellular Automata (CA) are a much studied class of dis-

crete dynamical systems, where highly complex behavior
may arise from local interactions. The most widely inves-
tigated problem refers to the density classification task -
a prototypical distributed computational task for CAs [1].
The problem refers to determining the density of the initial
configuration (IC) state, a task requiring global synchroniza-
tion, which must arise from locally passed information.

There is an ample body of work using evolutionary search
to find strategies for the CA DCT as a paradigm for the
evolution of collective computation in locally interacting dy-
namical systems [1, 2, 3].

Mitchell et al. [1] identifies three types of evolved strate-
gies, where the most complex, the so called particle strate-

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

gies use interactions among larger-scale patterns in order to
classify ICs. Particle rules typically have performance values
of 0.72 and higher on bit strings of length 149.

It appears to be difficult to evolve high-performance CAs
using the simple evolutionary mechanism. Many studies
have shown that only a small number of runs produce CAs
that use particle strategies.

2. COMPLEX SPACE-TIME SIGNATURES
In this work we focus on detecting online the formation

and propagation of “signals”, the behavior that characterizes
(or can lead to) particle based computing.

Complex rules exhibit a transient phase during which a
spatial and temporal transfer of information about the den-
sity in local regions takes place. Figure 1 visually depicts
the difference between the space-time diagram of a) a block-
expanding rule dominated by large areas of homogeneous
blocks of 1s and 0s, and b) a particle based rule, where the
signal areas exhibit fractal like patterns, maintaining a local
symmetry and balance between the density of 1s and 0s.

Our automatic signal detection proposals are based on
the following observations: (1) In order to propagate, sig-
nals must maintain locally a roughly equal density of 1s and
0s. Therefore they do not compress well under run-length
encoding (RLE), which replaces a long sequence of the same
symbol as a single data value plus its count. Space-time
diagrams of block-expanding rules compress very well with
RLE. (2) Along with density p close to 1/2, signals are also
characterized by repetition of patterns of 1s and 0s which
are bilateral symmetric (mirror-like symmetry). This sym-
metry enables the propagation of the signal, by recursively
transforming pattern of 1s in pattern of 0s and vice-versa.

3. EXPERIMENTS AND RESULTS
The space-time diagrams from 1000 unbiasedly generated

ICs for DCT, of 50 block-expanding rules (randomly ex-
tracted from runs of the GA reported in [1]) with perfor-
mances between 0.56% and 0.64% and highly fit particle
rules reported in the literature (presented in Table 1) were
compressed using RLE. The obtained result were normal-
ized by dividing with the original space-time diagram sizes
and an average was computed over the 1000 test cases. The
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Figure 1: Space-time plot of: a) a simple block-
expanding rule (performance: 0.64%) b) a complex
rule (performance: 0.89%).

block-expanding rules exhibited a high compressibility, with
a maximal average value of 0.074%. The particle rules ex-
hibited a compression rate between 0.54% and 0.88%, em-
pirically confirming the hypothesis that RLE compression is
a good discriminant between poorer and higher performing
rules for the DCT.

In a second step, the fitness function of a simple genetic
algorithm was modified, to potentially append the fitness
for individuals with original fitness greater than 0.6 with a
bonus based on non-RLE compressibility. The bonus rep-
resented 10% of the normalized RLE compressed value of
space-time diagrams and it was only awarded if this value
exceeded a threshold of 0.02. In this way, we encouraged the
departure of good enough individuals from block-expanding
rules.

50 runs of the modified algorithm showed, that the domi-
nant block-expanding rules are often replaced with high fit-
ness rules, that exhibit enlarged transient portions in their
space-time diagrams. Examples of such rules are depicted
in Figure 2.

The experiments have indicated that rewarding the non-
compressibility under RLE of space-time diagrams has the
potential to guide the evolutionary search away from basic
block-expanding rules and help automatic CA programming.
However, if the non-compressibility arrises from “random”
behavior and not useful signals, the classification perfor-
mance of a rule will be weak. Thus, the two objectives incor-
porated in the modified fitness function are often opposing
forces, which make it difficult to evolve both high perform-
ing, highly non-compressible rules. We believe a multiobjec-
tive optimization framework to be much more suitable for
this task. Another observation is, that in most cases, the
newly emerged, more frequent transient regions are short
lived, because they lack symmetry. Albeit performing bet-
ter, it is still hard for these rules to propagate information on
very large scales. Therefore, future research will focus on de-
veloping computationally efficient pattern recognition meth-
ods and rewarding mechanisms, which coupled in a multiob-
jective optimization framework will hopefully facilitate the
formation of transient regions exhibiting bilateral symmetry.
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Figure 2: Space-time plots of rules evolved with the
modified fitness function.

Code Rule (Hex) Perf.%
GKL 050005FF050005FF05FF05FF05FF05FF 81.6
K96 00550055005500555F55FF5F5F55FF5F 82.3
JP1 156043701700D25F15630F7714F3D77F 85.1
JP2 050C350F05007717058CF5FFC5F375D7 85
O08 0203330F01DF7B17028CFF0FC11F79D7 88.9

Table 1: Various high performance rules for the
DCT, in hexadecimal coding
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