
PSO-GPU: Accelerating Particle Swarm Optimization in CUDA-
Based Graphics Processing Units

Daniel Leal Souza1,2,3

daniel.leal.souza@gmail.com

Glauber Duarte Monteiro1,2

glauberbcc@gmail.com

Tiago Carvalho Martins3

tiagocm@ufpa.br
Victor Alexandrovich Dmitriev3

victor@ufpa.br

Otávio Noura Teixeira1

onoura@gmail.com

ABSTRACT
This work presents a PSO implementation in CUDA architecture,
aiming to speed up the algorithm on problems which has large
amounts of data. PSO-GPU algorithm was designed to
customization, in order to adapt for any problem that can be
solved by a PSO algorithm. By implementing PSO using CUDA
architecture, each processing core of the GPU will be responsible
for a portion of the overall processing operation, where each one
of these pieces are handled and executed in a massive parallel
enviroment, opening the possibility for solving problems that
require a large processing load in considerably less time. In order
to evaluate the performance of PSO-GPU algorithm two
functions were used, both global optimization problems, where
without constraints (Griewank function) and other considering
constraints, the Welded Beam Design (WBD).

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence –
Heuristic Methods.

D.1.3 [Software]: Concurrent Programming – Parallel
Programming.

General Terms
Algorithms, Performance, Parallelism, CUDA

Keywords
CUDA, Parallel Computing, Particle Swarm Optimization, Late-
Breaking Abstracts

1. INTRODUCTION
Particle Swarm Optimization is a stochastic optimization
technique initially designed for nonlinear and continuous
functions. It was developed by James Kennedy and Russel
Eberhart in 1995 [1] and inspired by Frank Heppner´s researches
about social behavior in some species of birds [2]. And according
to the mechanics of PSO, it is inspired by collaborative behavior
and swarming of biological populations like bee swarms, bird
flocks and fish schools.

One of the main difficulties in the PSO algorithm lies in the fact
that, depending on the complexity of the problem, the number of
particles and/or iterations shall be larger enought to increase the
probability of obtaining a good result, thereby increasing the
execution time of the algorithm, which is a problem in certain
cincunstances (e.g., real-time applications).

This work presents PSO-GPU, a generic and customizable
implementation of a PSO algorithm under the CUDA architecture,
that takes advantage from thousands of threads present in the
GPU, by reducing the runtime and increasing performance using
parallel processing.

In order to validate the results, tasks envolving Griewank function
(unconstrained) and WBD function (constrained) were executed in
PSO-GPU for speedup and convergence tests. The convergence
results obtained in WBD function were compared with another
results, found in [5], [6], [7] and [8]. The results shows that this
approach has a great appeal in the way to solve more quickly any
kind of optimization problems.

2 . P S O - G P U : PA R T I C L E S WA R M
O P T I M I Z A T I O N U N D E R C U D A
ARCHITECTURE
PSO is a metaheuristic with high capacity for parallelization. The
only operation that could not be performed concurrently is the
operation of finding the best global best.

PSO-GPU was designed to work with parallelism 1 to 1 (one
thread, one particle), where each element of the particle is treated
individually in the thread, allowing an efficient data parallelism,
without risk of starvation or race conditions. Figure 1 shows the
PSO flow task in CPU and Figure 2 shows the PSO flow task in
GPU.

Figure 1. Activity diagram of moving particle process in CPU

Figure 2. Activity diagram of moving particle process in GPU

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

837

mailto:daniel.leal.souza@gmail.com
mailto:daniel.leal.souza@gmail.com
mailto:glauberbcc@gmail.com
mailto:glauberbcc@gmail.com
mailto:tiagocm@ufpa.br
mailto:tiagocm@ufpa.br
mailto:tiagocm@ufpa.br
mailto:tiagocm@ufpa.br
mailto:onoura@gmail.com
mailto:onoura@gmail.com

3. SIMULATION AND RESULTS
The experiments were performed on a machine using NVIDIA
GeForce GT 330M with 256 MB of VRAM memory. Two
experiments were made, both of them, with different
configurations:

Experiment One (E1):

• Number of Particles: 512;

• Number of Tests Performed Per Function: 30;

• Number of Iterations: 10,000.

Experiment Two (E2):

• Number of Particles: 1,024;

• Number of Tests Performed Per Function: 30;

• Number of Iterations: 100,000.

All these simulations were made based on Griewank function
and WBD function with 30 and 4 dimensions, respectively.

Figure 3. Computing time between functions in Experiment
One

Table 1: Computing Time

Function Station Time
(Seconds) SpeedUp

Griewank
(E1)

C (CPU)
CUDA-C (GPU)

113.514
22.602 5.022x

WBD
(E1)

C (CPU)
CUDA-C (GPU)

19.381
8.872 2.184x

Griewank
(E2)

C (CPU)
CUDA-C (GPU)

254.431
81.92 3.105x

WBD
(E2)

C (CPU)
CUDA-C (GPU)

102.927
45.449 2.264x

Total 3.143x

Griewank (E1) WBD (E1) Griewank (E2)
WBD (E2)

0

75

150

225

300

C (CPU) C-CUDA (GPU)Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Implementation

Table 2: Convergence Results and Comparission With Other
Results

PSO-
GPU [4] [5] [6] [7]

Griewank

WBD

0 N/A N/A N/A N/A

1.45888 1.72802 1.72822 1.74830 2.43311

4. BRIEF DISCUSSION AND CONCLUSION
This paper has presented an implementation of the PSO in the
CUDA architecture. With the results obtained through
experiments, we can conclude that the exploration of the CUDA
benefits applied to bioinspired metaheuristics, where the purpose
is parallelize massively tasks which demand a very high
processing time brings great benefits, not only for being faster, but
to have a implementation which is portable, easy to read and adapt
to other problems. Another goal is the WBD results, that is better
than the other results.

As future improvements, we can mention the use of shared
memory in each thread block, in order to increase speed in data
access. Another implementation in progress, is the use of GPU to
perform multiple PSOs with same or different configurations, in a
cooperative system of multi-PSOs.

5. REFERENCES
[1] Kennedy, J. and Eberhart, R. Particle Swarm Optimization.

Proceedings of the IEEE International Conference on Neural
Networks, (Perth, Australia), (1995), 1942-1948. IEEE Press.

[2] Heppner, F. and Grenader, U. A Stochastic Nonlinear Model
For Coordinated Bird Flocks: The Ubiquity of Chaos. AAAS
Publications, Washington, DC, 1990.

[3] Kennedy, J. and Eberhart, R. A Discrete Binary Version of
The Particle Swarm Algorithm. Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics,
(Piscataway, New Jersey, USA), (1997), 4104-4108. IEEE
Press.

[4] He, Q., Wang, L. An Effective Co-evolutionary Particle
Swarm Optimization for Constrained Engineering Design
Problem. Engineering Aplications of Artificial Intellifence,
(2007), 89-99, Elsevier Press.

[5] Coello, C. A. C., Montes, E. M. Constraint-handling in
Genetic Algorithms through the use of Dominance-based
Tournament Selection. Advanced Engineering Informatics
16, (2002), 193-203.

[6] Coello, C. A. C. Use of a Self-adaptive Penalty Approach for
Engineering Optimization Problemas. Computers in Industry
41, (2000), 113-127.

[7] Deb, K. GeneAS: a robust optimal design technique for
mechanical component design. Dasgupta, D., Michalewicz, Z
(Eds.), Evolutionary Algorithms in Engineering Applications.
(Springer, Berlin), (1997), 497-514.

__

1Laboratório de Computação Natural (LCN), Área de Ciências Exatas e Tecnologia (ACET), Centro Universitário do Estado do Pará (CESUPA), Av. Governador José
Malcher, 1963 – São Brás – 66.060-230, Belém – Pará – Brasil. 55-91-4009-9145. URL: http://www.lcn-cesupa.org.
2Programa de Pós-Graduação em Ciência da Computação (PPGCC), Instituto de Ciências Exatas e Naturais (ICEN), Universidade Federal do Pará (UFPA), CEP –
66.075-110, Belém – Pará – Brasil. 55-91-3201-7103. URL: http://www.ufpa.br/ppgcc/ppgcc/.
3Laboratório de Nanofotônica e Nanoeletrônica, Instituto de Tecnologia (ITEC), Universidade Federal do Pará (UFPA), Caixa Postal 8619 – 66.075-900, Belém – Pará –
Brasil.

838

http://www.scholarpedia.org/article/Chaos
http://www.scholarpedia.org/article/Chaos
http://www.scholarpedia.org/article/Cybernetics
http://www.scholarpedia.org/article/Cybernetics
http://www.lcn-cesupa.org
http://www.lcn-cesupa.org
http://www.ufpa.br/ppgcc/ppgcc/
http://www.ufpa.br/ppgcc/ppgcc/

