
Introduction to
Genetic Algorithms

A Tutorial by Erik D. Goodman
Director, BEACON Center for the Study of Evolution in Action

(An NSF Science and Technology Center)
Professor, Electrical and Computer Engineering; Computer Science &

Engineering; Mechanical Engineering
Michigan State University, East Lansing, Michigan USA

goodman@egr.msu.edu

Copyright is held by the author/owner(s).
GECCO’11, July 12-16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

Thanks to:

Much of this material is based on:
 David Goldberg, Genetic Algorithms in

Search, Optimization, and Machine Learning,
Addison-Wesley, 1989 (still one of the best
introductions!)
 Darrell Whitley, “Genetic Algorithm

Tutorial” – on the web at
www.cs.colostate.edu/~genitor/MiscPubs/tutorial.pdf

Agenda

 Quick intro – What IS a genetic
algorithm?
 Classical, binary chromosome

Where used, & when better to use
something else
 A little theory – why a GA works
 GA in Practice -- some modern variants

Objectives of the Tutorial

Master some key concepts and terminology
that pervade many other GECCO papers/talks
 Be familiar with some examples of application

of genetic algorithms
 Be able to recognize the diversity of

approaches that the field encompasses

839

Genetic Algorithms:

 Are a method of search, often applied to
optimization or learning

 Are stochastic – but are not random search
 Use an evolutionary analogy, “survival of fittest”
 Not fast in some sense; but sometimes more

robust; scale relatively well, so can be useful
 Have extensions including Genetic Programming

(GP) (LISP-like function trees), learning
classifier systems (evolving rules), linear GP
(evolving “ordinary” programs), many others

The Canonical or Classical GA

Maintains a set or “population” of strings
at each stage
 Each string is called a chromosome, and

encodes a “candidate solution”–
CLASSICALLY, encodes as a binary
string (and now in almost any conceivable
representation)

Criterion for Search

 Goodness (“fitness”) or optimality of a string’s
solution determines its FUTURE influence on
search process -- survival of the fittest

 Solutions which are good are used to generate
other, similar solutions which may also be good
(even better)

 The POPULATION at any time stores ALL we
have learned about the solution, at any point

 Robustness (efficiency in finding good solutions
in difficult searches) is key to GA success

Classical GA:
The Representation

1011101010 – a possible 10-bit string
(“CHROMOSOME”) representing a possible solution to
a problem

Bits or subsets of bits might represent choice of some feature,
for example. Let’s represent choice of shipping container for
some object:

bit position meaning
1-2 steel, aluminum, wood or cardboard
3-5 thickness (1mm-8mm)
6-7 fastening (tape, glue, rope, plastic wrap)
8 stuffing (paper or plastic “peanuts”)
9 corner reinforcement (yes, no)
10 handles (yes, no)

840

Terminology

Each position (or each set of positions that encodes some
feature) is called a LOCUS (plural LOCI)

Each possible value at a locus is called an ALLELE
We need a simulator, or evaluator program, that can tell us

the (probable) outcome of shipping a given object in any
particular type of container

 may be a COST (including losses from damage) (for
example, maybe 1.4 means very low cost, 8.3 is very bad
on a scale of 0-10.0), or

 may be a FITNESS, or a number that is larger if the
result is BETTER

How Does a GA Operate?

 For ANY chromosome, must be able to
determine a FITNESS (measure of performance
toward an objective) using a simulator or
analysis tool, etc.

 Objective may be maximized or minimized;
usually say fitness is to be maximized, and if
objective is to be minimized, define fitness from
it as something to maximize

GA Operators:
Classical Mutation

 Operates on ONE “parent” chromosome
 Produces an “offspring” with changes.
 Classically, toggles one bit in a binary

representation
 So, for example: 1101000110 could

mutate to: 1111000110
 Each bit has same probability of mutating

Classical Crossover

 Operates on two parent chromosomes
 Produces one or two children or offspring
 Classical crossover occurs at 1 or 2 points:
 For example: (1-point) (2-point)

1111111111 or 1111111111
X 0000000000 0000000000

1110000000 1110000011
and 0001111111 0001111100

841

Selection

 Traditionally, parents are chosen to mate with
probability proportional to their fitness:
proportional selection

 Traditionally, children replace their parents
 Many other variations now more commonly

used (we’ll come back to this)
 Overall principle: survival of the fittest

Synergy – the KEY

Clearly, selection alone is no good …
Clearly, mutation alone is no good …
Clearly, crossover alone is no good …
Fortunately, using all three simultaneously

is sometimes spectacular!

Contrast with Other Search
Methods

 “indirect” -- setting derivatives to 0
 “direct” -- hill climber
 enumerative – search ‘em all
 random – just keep trying, or can avoid

resampling
 simulated annealing – single-point method, reals,

changes all loci randomly by decreasing
amounts, mostly keeps the better answer, …

 Tabu (another common method)

BEWARE of Claims about ANY
Algorithm’s Asymptotic Behavior –

“Eventually” is a LONG Time

 LOTS of methods can guarantee to find the best
solution, probability 1, eventually…
 Enumeration
 Random search (better without resampling)
 SA (properly configured)
 Any GA that avoids “absorbing states” in a Markov

chain

 The POINT: you can’t afford to wait that long,
if the problem is anything interesting!!!

842

When Might a GA
Be Any Good?

 Highly multimodal functions
 Discrete or discontinuous functions
 High-dimensionality functions, including many

combinatorial ones
 Nonlinear dependencies on parameters

(interactions among parameters) -- “epistasis”
makes it hard for others

 Often used for approximating solutions to NP-
complete combinatorial problems

 DON’T USE if a hill-climber, etc., will work well

The Limits to Search

 No search method is best for all problems – per
the No Free Lunch Theorem

 Don’t let anyone tell you a GA (or THEIR
favorite method) is best for all problems!!!

 Needle-in-a-haystack is just hard, in practice
 Efficient search must be able to EXPLOIT

correlations in the search space, or it’s no better
than random search or enumeration

 Must balance with EXPLORATION, so don’t
just find nearest local optimum

Examples of Successful Real-
World GA Application

 Antenna design
 Drug design
 Chemical classification
 Electronic circuits (Koza)
 Factory floor scheduling

(Volvo, Deere, others)
 Turbine engine design

(GE)
 Crashworthy car design

(GM/Red Cedar)
 Protein folding

 Network design
 Control systems design
 Production parameter

choice
 Satellite design
 Stock/commodity

analysis/trading
 VLSI partitioning/

placement/routing
 Cell phone factory tuning
 Data Mining

EXAMPLE!!!
Let’s Design a Flywheel

GOAL: To store as much energy as
possible (for a given diameter
flywheel) without breaking apart

 On the chromosome, a number
specifies the thickness (height) of
the “ring” at each given radius

 Center “hole” for a bearing is fixed
 To evaluate: simulate spinning it

faster and faster until it breaks;
calculate how much energy is stored
just before it breaks

843

Flywheel Example

So if we use 8 rings, the chromosome might look like:
6.3 3.7 2.5 3.5 5.6 4.5 3.6 4.1

If we mutate HERE, we might get:
6.3 3.7 4.1 3.5 5.6 4.5 3.6 4.1
And that might look like (from the side):

Recombination (“Crossover”)

If we recombine two designs, we might get:
6.3 3.7 2.5 3.5 5.6 4.5 3.6 4.1

x
3.6 5.1 3.2 4.3 4.4 6.2 2.3 3.4

3.6 5.1 3.2 3.5 5.6 4.5 3.6 4.1

This new design might be BETTER or WORSE!

Typical GA Operation -- Overview

Initialize population at random

Evaluate fitness of new
chromosomes

Perform crossover and
mutation on parents

Select survivors (parents)
based on fitness

Good
Enough? DoneYes

No

A GA Evolves the Flywheel:

One Choice of Choice

Material Materials (side view)

844

Prior to Lohn’s evolution
of a design, a contract had
been awarded for
designing the antenna.
Result: this quadrifilar
helical antenna (QHA).

Radiator

Under the ground
plane: matching and

phasing network

Another Example: NASA ST5 Quadrifilar
Helical Antenna:

Given a Desired Pattern, Design the Antenna

2nd Set of Evolved Antennas
(Now Flying on 3 Satellites)

“Genetic Algorithm” --
Meaning?

 “classical or canonical” GA -- Holland
(taught in ‘60’s, book in ‘75) -- binary
chromosome, population, selection,
crossover (recombination), low rate of
mutation
More general GA: population, selection,

(+ recombination) (+ mutation) -- may be
hybridized with LOTS of other stuff

Representation Terminology

 Classically, binary string: individual or
chromosome

 What’s on the chromosome is GENOTYPE
 What it means in the problem context is the

PHENOTYPE (e.g., binary sequence may map to
integers or reals, or order of execution, or inputs
to a simulator, etc.)

 Genotype determines phenotype, but phenotype
may look very different

845

Discretization – Representation
Meets Mutation!

 If problem is binary decisions, bit-flip mutation is fine
 BUT if using binary numbers to encode integers, as in

[0,15] [0000, 1111], problem with Hamming cliffs:
 One mutation can change 6 to 7: 0110 0111,

BUT
 Need 4 bit-flips to change 7 to 8: 0111 1000
 That’s called a “Hamming cliff”

 May use Gray (or other distance-one) codes to
improve properties of operators: for example: 000,
001, 011, 010, 110, 111, 101, 100

Mutation Revisited

On “parameter encoded” representations
 Binary ints

 Gray codes and bit-flips
 Or binary ints & 0-mean, Gaussian changes, etc.

 Real-valued domain
 Can discretize to binary -- typically powers of 2

with lower, upper limits, linear/exp/log scaling
 End result (classically) is a bit string

 BUT many now work with real-valued GAs, non-bit-
flip (0-mean, Gaussian “noise”) mutation operators

Defining Objective/Fitness
Functions

 Problem-specific, of course
 Many involve using a simulator
 Don’t need to know (or even HAVE) derivatives
 May be stochastic
 Need to evaluate thousands of

times, so can’t be TOO
COSTLY

 For real-world, evaluation
time is typical bottleneck

 Example: simple fitness
criterion, but complex to
calculate:

Back to the “What” Function?

 In problem-domain form -- “absolute” or “raw”
fitness, or evaluation or performance or objective
function

 Relative fitness (to population), may require
inverting and/or offsetting, scaling the objective
function, yielding the fitness function. Fitness
should be MAXIMIZED, whereas the objective
function might need to be MAXIMIZED OR
MINIMIZED.

846

Selection

In a classical, “generational” GA:
 Based on fitness, choose the set of individuals

(the “intermediate” population) that will soon:
 survive untouched, or
 be mutated, replaced, or
 in pairs, be crossed over and possibly

mutated, with offspring replacing parents
One individual may appear several times in the
intermediate population (or the next population)

Scaling of Relative Fitnesses

 Trouble: as evolution progresses, relative
fitness differences get smaller (as
chromosomes get more similar to each
other – population is converging). Often
helpful to SCALE relative fitnesses to keep
about same ratio of best guy/average guy,
for example.

OR, use Another Type of
Selection

Proportional, using relative fitness (examples):
 “roulette wheel” -- classical Holland -- chunk of wheel ~

relative fitness
 stochastic uniform sampling -- better sampling -- integer

parts GUARANTEED; still proportional
OR, NOT requiring relative fitness, nor fitness scaling:
 tournament selection
 rank-based selection (proportional to rank or all above

some threshold)
 elitist (mu, lambda) or (mu+lambda) from ES

Explaining Why a GA Works –
Intro to GA Theory

 Just touching the surface with two
classical results:
 Schema theorem – how search effort is

allocated
 Implicit parallelism – each evaluation

provides information on many possible
candidate solutions

847

What is a GA DOING? (Schemata
and Hyperstuff)

 Schema -- adds “*”, means “don’t care”
 One schema, two schemata
 Definition: ORDER of schema H = o(H): # of non-*’s
 Def.: Defining Length of schema, distance between

first and last non-* in a schema; for example:
 (**1*01*0**) = 5 (= number of positions where 1-pt
crossover can disrupt it).
(NOTE: diff. xover diff. relationship to defining length)

 Strings or chromosomes are order L schemata, where L is
length of chromosome (in bits or loci). Chromosomes are
INSTANCES (or members) of lower-order schemata

Vertices are order ? schemata

Edges are order ? schemata

Planes are order ? schemata

Cubes (a type of hyperplane)
are order ? schemata

8 different order-1 schemata
(cubes): 0***, 1***, *0**,
*1**, **0*, **1*, ***0, ***1

Cube and Hypercube

Hypercubes, Hyperplanes, Etc.

 A string is an instance of how many
schemata (a member of how many
hyperplane partitions)? (not counting the
“all *’s,” per Holland)
 If L=3, then, for example, 111 is an

instance of how many (and which)
schemata: 7 schemata
 23-1

GA Sampling of Hyperplanes

So, in general, string of length L is an instance
of 2L-1 schemata

But how many schemata are there in the whole
search space?

(how many choices each locus?)
Since one string instances 2L-1 schemata, how

much does a population tell us about schemata
of various orders?

Implicit parallelism: one string’s fitness tells us
something about relative fitnesses of more than
one schema.

848

Fitness and Schema/
Hyperplane Sampling

 Look at next figure (from Whitley
tutorial), for another view of hyperspaces

Whitley’s illustration of
various partitions of
fitness hyperspace

Plot fitness versus one
variable discretized as a
K = 4-bit binary
number: then get

First graph shades 0***

Second superimposes
**1*, so crosshatches
are ?

Third superimposes
0*10

Fitness and Schema/ Hyperplane Sampling

How Do Schemata Propagate?

 Via instances -- only STRINGS appear in
pop – you’ll never actually see a schema
 But, in general, want schemata whose

instances have higher average fitnesses
(even just in the current population in
which they’re instanced) to get more
chance to reproduce. That’s how we make
the fittest survive!

Proportional Selection Favors
“Better” Schemata

 Select the INTERMEDIATE population, the “parents”
of the next generation, via fitness-proportional selection

 Let M(H,t) be number of instances (samples) of schema
H in population at time t. Then fitness-proportional
selection yields an expectation of:

 In an example, actual number of instances of schemata
(next page) in intermediate generation tracked expected
number pretty well, in spite of small pop size

f
tHftHMintermedtHM),(),(),(

849

Results of example run (Whitley) showing that observed numbers
of instances of schemata track expected numbers pretty well

Now, What Does
CROSSOVER Do to Schemata

 One-point Crossover Examples (blackboard)
11******** and 1********1

 Two-point Crossover Examples (blackboard)
(rings)

 Closer together loci are, less likely to be disrupted
by crossover. A “compact representation” tends to
keep alleles together under a given form of
crossover (minimizes probability of disruption).

Linkage and Defining Length

 Linkage -- “coadapted alleles”
(generalization of a compact representation
with respect to schemata)
 Example, convincing you that probability

of disruption by 1-point crossover of
schema H of length (H) is (H)/(L-1):

1****01**1

The Fundamental Theorem of Genetic
Algorithms -- “The” Schema Theorem

Holland published in ANAS in 1975, had taught it
much earlier (by 1968, for example, when I
started Ph.D. at UM)

It provides lower bound on change in sampling rate
of a single schema from generation t to t+1.
We’ll consider it in several steps, starting from
the change caused by selection alone:

f
tHftHMintermedtHM),(),(),(

850

Schema Theorem Derivation (cont.)

Now we want to add effect of crossover:
A fraction pc of pop undergoes crossover, so:

Conservative assumption: crossover within the
defining length of H is always disruptive to H,
and will ignore gains (we’re after a LOWER
bound -- won’t be as tight, but simpler). Then:

])1(),([),()1()1,(),(),(gainslossestHMptHMptHM
f
tHf

cf
tHf

c

)]1(),([),()1()1,(),(),(sdisruptiontHMptHMptHM
f
tHf

cf
tHf

c

Schema Theorem Derivation (cont.)

Whitley adds a non-disruption case that Holland ignored:
If cross instance of H with another, anywhere, get no

disruption. Chance of doing that, drawing second
parent at random, is P(H,t) = M(H,t)/popsize: so prob.
of disruption by x-over is:

Then can simplify the inequality, dividing by popsize and
rearranging re pc:

So far, we have ignored mutation and assumed second
parent is chosen at random. But it’s interesting, already.

)),(1(1
)(tHPL

H

))],(1(1[),()1,(1
)(),(tHPptHPtHP L

H
cf

tHf

Schema Theorem Derivation (cont.)

Now, we’ll choose the second parent based on
fitness, too:

Now, add effect of mutation. What is probability
that a mutation affects schema H? (Assuming
mutation always flips bit or changes allele):

Each fixed bit of schema (o(H) of them) changes
with probability pm, so they ALL stay
UNCHANGED with probability:

)]),(1(1[),()1,(),(
1
)(),(

f
tHf

L
H

cf
tHf tHPptHPtHP

)()1(Ho
mp

Schema Theorem Derivation (cont.)

Now we have a more comprehensive
schema theorem:

People often use Holland’s earlier, simpler,
but less accurate bound, first
approximating the mutation loss factor as
(1-o(H)pm), assuming pm<<1.

)(),(
1
)(),()1)](),(1(1[),()1,(Ho

mf
tHf

L
H

cf
tHf ptHPptHPtHP

851

Schema Theorem Derivation (cont.)

That yields:

But, since pm<<1, we can ignore small cross-
product terms and get:

That is what many people recognize as the
“classical” form of the schema theorem.

What does it tell us?

])(1][1[),()1,(1
)(),(

mL
H

cf
tHf pHoptHPtHP

])(1[),()1,(1
)(),(

mL
H

cf
tHf pHoptHPtHP

Using the Schema Theorem

Even a simple form helps balance initial selection
pressure, crossover & mutation rates, etc.:

Say relative fitness of H is 1.2, pc = .5, pm = .05 and
L = 20: What happens to H, if H is long?
Short? High order? Low order?

Pitfalls: slow progress, random search, premature
convergence, etc.

Problem with Schema Theorem – important at
beginning of search, but less useful later...

])(1[),()1,(1
)(),(

mL
H

cf
tHf pHoptHPtHP

Building Block Hypothesis

Define a Building block as: a short, low-order, high-
fitness schema

BB Hypothesis: “Short, low-order, and highly fit
schemata are sampled, recombined, and resampled
to form strings of potentially higher fitness… we
construct better and better strings from the best
partial solutions of the past samplings.”

-- David Goldberg, 1989
(GA’s can be good at assembling BB’s, but GA’s are

also useful for many problems for which BB’s are
not available)

Using the Schema Theorem to Exploit
the Building Block Hypothesis

For newly discovered building blocks to be
nurtured (made available for combination with
others), but not allowed to take over population
(why?):

 Mutation rate should be:
(but contrast with SA, ES, (1+), …)

 Crossover rate should be:
 Selection should be able to:
 Population size should be (oops – what can we

say about this?… so far… infinity is large…):

852

Traditional Ways to Do GA
Search…

 Population “large”
Mutation rate (per locus) ~ 1/L
 Crossover rate moderate (<0.3) or high

(per DeJong, .7, or up to 1.0)
 Selection scaled (or rank/tournament, etc.)

such that Schema Theorem allows new
BB’s to grow in number, but not lead to
premature convergence

Schema Theorem and
Representation/Crossover Types

If we use a different type of representation
or different crossover operator:
 Must formulate a different schema

theorem, using same ideas about
disruption of some form of “schemata”

Uniform Crossover & Linkage
 2-pt crossover is superior to 1-point
 Uniform crossover chooses allele for each locus at

random from either parent
 Uniform crossover is thus more disruptive than 1-pt or

2-pt crossover
 BUT uniform is unbiased relative to linkage
 If all you need is small populations and a “rapid

scramble” to find good solutions, uniform xover
sometimes works better – but is this what you need a GA
for? Hmmmm…

 Otherwise, try to lay out chromosome for good linkage,
and use 2-pt crossover (or Booker’s 1987 reduced
surrogate crossover, (described later))

The N3 Argument (Implicit or
Intrinsic Parallelism)

Assertion: A GA with pop size N can usefully
process on the order of N3 hyperplanes
(schemata) in a generation.

(WOW! If N=100, N3 = 1 million)
To elaborate, assume:
 Random population of size N.
 Need instances of a schema to claim we are

“processing” it in a statistically significant way
in one generation.

853

The N3 Argument (cont.)

Example: to have 8 samples (on average) of 2nd

order schemata in a pop., (there are 4 distinct
(CONFLICTING) schemata in each 2-position pair
– for example, *0*0**, *0*1**, *1*0**, *1*1**),
we’d need 4 bit patterns x 8 instances = 32 popsize.

In general, the highest ORDER of schema, , that is
“processed” is log (N/); in our case, log(32/8) =
log(4) = 2. (log means log2)

θ

The N3 Argument (cont.)

Instead of general case, Fitzpatrick & Grefenstette argued:
 Assume
 Pick =8, which implies
 By inspection (plug in N’s, get ’s, etc.), the number of

schemata processed is greater than N3. For example, N=64,
schemata order 3 or less is > 2**61 > 64**3 = 2**18 =
256K.

 So, as long as our population size is REASONABLE (64 to
a million) and L is large enough (problem hard enough),
the argument holds.

 But this deals with the initial population, and it does not
necessarily hold for the latter stages of evolution. Still, it
may help to explain why GA’s can work so well…

206 22and64 NL
17θ3

θ

Exponentially Increasing Sampling
and the K-Armed Bandit Problem

Question: How much sampling should above-average
schemata get?

Holland showed, subject to some conditions, using analysis
of problem of allocating choices to maximize reward
returned from slot machines (“K-Armed Bandit
Problem”) that:

• Should allocate an exponentially increasing fraction of
trials to above-average schemata

• The schema theorem says that, with careful choice of
population size, fitness measure, crossover and mutation
rates, a GA can do that:

• (Schema Theorem says M(H,t+1) >= k M(H,t))
That is, H’s instances in population grow exponentially, as
long as small relative to pop size and k>1 (H is a “building
block”).

Want More GA Theory?

Vose and Liepins (’91) produced best-known
model, looking at a GA as a Markov chain – the
fraction of population occupying each possible
genome at time t is the state of the system. It’s
“correct”, but difficult to apply for practical
guidance.

Shapiro and others have developed a model based
on principles of statistical mechanics

Lots of others work on aspects of GA theory
Attend other GECCO tutorials or the FOGA

Workshop for more theory!

854

What are Common Problems
when Using GAs in Practice?

 Hitchhiking:
BB1.BB2.junk.BB3.BB4:
junk adjacent to building
blocks tends to get “fixed” –
can be a problem

 Deception: a 3-bit
deceptive function

 Epistasis: nonlinear effects,
more difficult to capture if
spread out on chromosome

0
1
2
3
4
5
6
7
8
9

10

'000 '001 '010 '011 '100 '101 '110 '111

In PRACTICE – GAs Do a JOB

 DOESN’T mean necessarily finding global optimum
 DOES mean trying to find better approximate answers

than other methods do, within the time available!
 People use any “dirty tricks” that work:

 Hybridize with local search operations
 Use multiple populations/multiple restarts, etc.
 Use problem-specific representations and operators

 The GOALS:
 Minimize # of function evaluations needed
 Balance exploration/exploitation so get best answer can during

time available (AVOIDING premature convergence)

Other Forms of GA

Generational vs. “Steady-State”
 “Generation gap”: 1.0 means replace ALL

by newly generated “children”
 at lower extreme, generate 1 (or 2)

offspring per generation (called “steady-
state”) – no real “generations” – children
ready to become parents on next operation

More Forms of GA

Replacement Policy:
1. Offspring replace parents
2. K offspring replace K worst ones
3. Offspring replace random individuals in

intermediate population
4. Offspring are “crowded” in
5. “Elitism” – always keep best K

855

Crowding

Crowding (DeJong) helps form “niches” and reduce
premature takeover by fit individuals

For each child:
 Pick K candidates for replacement, at random,

from intermediate population
 Calculate pseudo-Hamming distance from child to

each
 Replace individual most similar to child
Effect?

Example GA Packages –
GENITOR (Whitley)

 Steady-state GA
 Two-point crossover, reduced surrogates
 Child replaces worst-fit individual
 Fitness is assigned according to rank (so

no scaling is needed)
 (elitism is automatic)

Example GA Packages –
CHC (Eshelman)

 Elitism -- (+) from ES: generate offspring from
parents, keep best of the + parents and
children.

 Uses incest prevention (reduction) – pick mates on
basis of their Hamming dissimilarity

 HUX – form of uniform crossover, highly disruptive
 Rejuvenate with “cataclysmic mutation” when

population starts converging, which is often (small
populations used)

 No mutation

Hybridizing GAs – a Good Idea!

IDEA: combine a GA with local or problem-
specific search algorithms

HOW: typically, for some or all individuals, start
from GA solution, take one or more steps
according to another algorithm, use resulting
fitness as fitness of chromosome.

If also change genotype, “Lamarckian;” if don’t,
“Baldwinian” (preserves schema processing)

Helpful in many constrained optimization
problems to “repair” infeasible solutions to
nearby feasible ones

856

Other Representations/Operators:
Permutation/Optimal Ordering

 Chromosome has EXACTLY ONE copy
of each int in [0,N-1]
Must find optimal ordering of those ints
 1-pt, 2-pt, uniform crossover ALL useless
Mutations: swap 2 loci, scramble K

adjacent loci, shuffle K arbitrary loci, etc.

Crossover Operators for
Permutation Problems

What properties do we want:
 1) Want each child to combine

building blocks from both parents in a
way that preserves high-order
schemata in as meaningful a way as
possible, and
 2) Want all solutions generated to be

feasible solutions.

Operators for Permutation-Based
Representations, Using TSP Problem:

Example: PMX -- Partially Matched Crossover

 2 sites picked, intervening section specifies
“cities” to interchange between parents:

 A = 9 8 4 | 5 6 7 | 1 3 2 10
 B = 8 7 1 | 2 3 10 | 9 5 4 6
 A’ = 9 8 4 | 2 3 10 | 1 6 5 7
 B’ = 8 10 1 | 5 6 7 | 9 2 4 3

 (i.e., swap 5 with 2, 6 with 3, and 7 with 10 in both
children.)

 Thus, some ordering information from each parent
is preserved, and no infeasible solutions are
generated

 Only one of many specialized operators developed

Other Approaches for
Combinatorial Problems

Choose a less direct representation that
allows using traditional operators:
 Assign an arbitrary integer to each

position on chromosome
 Order phenotype by sorting the integers
 Then ordinary crossover, mutation work

fine, produce legal genotypes

857

Parallel GAs
(Independent of Parallel Hardware)

Three primary models: coarse-grain (island), fine-
grain (cellular), and micro-grain (trivial)

Trivial (not really a parallel GA – just a parallel
implementation of a single-population GA): pass
out individuals to separate processors for
evaluation (or run lots of local tournaments, no
master) – still acts like one large population

Coarse-Grain (Island) Parallel GA

N “independent” subpopulations, acting as if
running in parallel (timeshared or actually on
multiple processors)

Occasionally, migrants go from one to another,
in pre-specified patterns

Strong capability for avoiding premature
convergence while exploiting good
individuals, if migration rates/patterns well
chosen

Fine-Grain Parallel GAs

 Individuals distributed on cells in a tessellation,
one or few per cell (often, toroidal checkerboard)

 Mating typically among near neighbors, in some
defined neighborhood

 Offspring typically placed near parents
 Can help to maintain spatial “niches,” thereby

delaying premature convergence
 Interesting to view as a cellular automaton

Refined Island Models –
Heterogeneous/ Hierarchical GAs

 For many problems, useful to use different
representations/levels of refinement/types of
models, allow them to exchange “nuggets”

 GALOPPS was first package to support this
 Injection Island architecture arose from this,

now used in HEEDS, etc.
 Hierarchical Fair Competition is newest

development (Jianjun Hu), breaking populations
by fitness bands

858

Multi-Level GAs

 Island GA populations are on lower level, their
parameters/operators/ neighborhoods on
chromosome of a single higher-level population
that controls evolution of subpopulations (for
example, DAGA2, 1995)

 Excellent performance – reproducible
trajectories through operator space, for example

Examples of Population-to-Population
Differences in a Heterogeneous GA

 Different GA parameters (pop size, crossover
type/rate, mutation type/rate, etc.)
 2-level or without a master pop

 Examples of Representation Differences:
 Hierarchy – one-way migration from least refined

representation to most refined
 Different models in different subpopulations
 Different objectives/constraints in different subpops

(sometimes used in Evolutionary Multiobjective
Optimization (“EMOO”))

Multiobjective GAs

 Often want to address multiple objectives
 Can use a GA to explore the Pareto

FRONT
Many approaches; Deb’s or Coello’s

books are good places to start

How Do GAs Go Bad?

 Premature convergence
 Unable to overcome deception
 Need more evaluations than time permits
 Bad match of representation/mutation/crossover,

making operators destructive
 Biased or incomplete representation
 Problem too hard
 (Problem too easy, makes GA look bad)

859

So, in Conclusion…

 GAs can be easy to use, but not necessarily easy
to use WELL

 Don’t use them if something else will work – it
will probably be faster

 GAs can’t solve every problem, either…
 GAs are only one of several strongly related

“branches” of evolutionary computation – and
they all commonly get hybridized

 There’s lots of expertise at GECCO – talk to
people for ideas about how to address YOUR
problem using evolutionary computation

860

