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Agenda

 Quick intro – What IS a genetic 
algorithm?
 Classical, binary chromosome

Where used, & when better to use 
something else
 A little theory – why a GA works
 GA in Practice -- some modern variants

Objectives of the Tutorial

Master some key concepts and terminology 
that pervade many other GECCO papers/talks
 Be familiar with some examples of application 

of genetic algorithms
 Be able to recognize the diversity of 

approaches that the field encompasses
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Genetic Algorithms:

 Are a method of search, often applied to 
optimization or learning

 Are stochastic – but are not random search
 Use an evolutionary analogy, “survival of fittest”
 Not fast in some sense; but sometimes more 

robust; scale relatively well, so can be useful
 Have extensions including Genetic Programming 

(GP) (LISP-like function trees), learning 
classifier systems (evolving rules), linear GP 
(evolving “ordinary” programs), many others

The Canonical or Classical GA

Maintains a set or “population” of strings
at each stage 
 Each string is called a chromosome, and 

encodes a “candidate solution”–
CLASSICALLY, encodes as a binary 
string (and now in almost any conceivable 
representation)

Criterion for Search

 Goodness (“fitness”) or optimality of a string’s 
solution determines its FUTURE influence on 
search process -- survival of the fittest

 Solutions which are good are used to generate 
other, similar solutions which may also be good 
(even better)

 The POPULATION at any time stores ALL we 
have learned about the solution, at any point

 Robustness (efficiency in finding good solutions 
in difficult searches) is key to GA success

Classical GA: 
The Representation

1011101010 – a possible 10-bit string 
(“CHROMOSOME”) representing a possible solution to 
a problem

Bits or subsets of bits might represent choice of some feature, 
for example.  Let’s represent choice of shipping container for 
some object:

bit position meaning
1-2 steel, aluminum, wood or cardboard
3-5 thickness (1mm-8mm)
6-7 fastening (tape, glue, rope, plastic wrap)
8 stuffing (paper or plastic “peanuts”)
9 corner reinforcement (yes, no)
10 handles (yes, no)
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Terminology

Each position (or each set of positions that encodes some 
feature) is called a LOCUS (plural LOCI)

Each possible value at a locus is called an ALLELE
We need a simulator, or evaluator program, that can tell us 

the (probable) outcome of shipping a given object in any 
particular type of container

 may be a COST (including losses from damage) (for 
example, maybe 1.4 means very low cost, 8.3 is very bad 
on a scale of 0-10.0), or

 may be a FITNESS, or a number that is larger if the 
result is BETTER

How Does a GA Operate?

 For ANY chromosome, must be able to 
determine a FITNESS (measure of performance 
toward an objective) using a simulator or 
analysis tool, etc.

 Objective may be maximized or minimized; 
usually say fitness is to be maximized, and if 
objective is to be minimized, define fitness from 
it as something to maximize

GA Operators:
Classical Mutation

 Operates on ONE “parent” chromosome
 Produces an “offspring” with changes.
 Classically, toggles one bit in a binary 

representation
 So, for example: 1101000110 could 

mutate to: 1111000110
 Each bit has same probability of mutating

Classical Crossover

 Operates on two parent chromosomes
 Produces one or two children or offspring
 Classical crossover occurs at 1 or 2 points:
 For example:  (1-point) (2-point)

1111111111 or  1111111111
X 0000000000 0000000000

1110000000 1110000011
and 0001111111      0001111100
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Selection

 Traditionally, parents are chosen to mate with 
probability proportional to their fitness: 
proportional selection

 Traditionally, children replace their parents
 Many other variations now more commonly 

used (we’ll come back to this)
 Overall principle:  survival of the fittest

Synergy – the KEY

Clearly, selection alone is no good …
Clearly, mutation alone is no good …
Clearly, crossover alone is no good …
Fortunately, using all three simultaneously 

is sometimes spectacular!

Contrast with Other Search 
Methods

 “indirect” -- setting derivatives to 0
 “direct” -- hill climber
 enumerative – search ‘em all
 random – just keep trying, or can avoid 

resampling
 simulated annealing – single-point method, reals, 

changes all loci randomly by decreasing 
amounts, mostly keeps the better answer, …

 Tabu (another common method)

BEWARE of Claims about ANY 
Algorithm’s Asymptotic Behavior –

“Eventually” is a LONG Time

 LOTS of methods can guarantee to find the best 
solution, probability 1, eventually…
 Enumeration
 Random search (better without resampling)
 SA (properly configured)
 Any GA that avoids “absorbing states” in a Markov 

chain

 The POINT:  you can’t afford to wait that long, 
if the problem is anything interesting!!!
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When Might a GA
Be Any Good?

 Highly multimodal functions
 Discrete or discontinuous functions
 High-dimensionality functions, including many 

combinatorial ones
 Nonlinear dependencies on parameters 

(interactions among parameters) -- “epistasis”
makes it hard for others

 Often used for approximating solutions to NP-
complete combinatorial problems

 DON’T USE if a hill-climber, etc., will work well

The Limits to Search

 No search method is best for all problems – per 
the No Free Lunch Theorem

 Don’t let anyone tell you a GA (or THEIR 
favorite method) is best for all problems!!!

 Needle-in-a-haystack is just hard, in practice
 Efficient search must be able to EXPLOIT 

correlations in the search space, or it’s no better 
than random search or enumeration

 Must balance with EXPLORATION, so don’t 
just find nearest local optimum

Examples of Successful Real-
World GA Application

 Antenna design
 Drug design
 Chemical classification
 Electronic circuits (Koza)
 Factory floor scheduling 

(Volvo, Deere, others)
 Turbine engine design 

(GE)
 Crashworthy car design 

(GM/Red Cedar)
 Protein folding

 Network design
 Control systems design
 Production parameter 

choice
 Satellite design
 Stock/commodity 

analysis/trading
 VLSI partitioning/ 

placement/routing
 Cell phone factory tuning
 Data Mining

EXAMPLE!!!
Let’s Design a Flywheel

GOAL:  To store as much energy as 
possible (for a given diameter 
flywheel) without breaking apart

 On the chromosome, a number 
specifies the thickness (height) of 
the “ring” at each given radius

 Center “hole” for a bearing is fixed
 To evaluate:  simulate spinning it 

faster and faster until it breaks; 
calculate how much energy is stored 
just before it breaks
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Flywheel Example

So if we use 8 rings, the chromosome might look like:
6.3 3.7 2.5 3.5 5.6 4.5 3.6 4.1

If we mutate HERE, we might get:
6.3 3.7 4.1 3.5 5.6 4.5 3.6 4.1
And that might look like (from the side):

Recombination (“Crossover”)

If we recombine two designs, we might get:
6.3 3.7 2.5 3.5 5.6 4.5 3.6 4.1

x
3.6 5.1 3.2 4.3 4.4 6.2 2.3 3.4

3.6 5.1 3.2 3.5 5.6 4.5 3.6 4.1

This new design might be BETTER or WORSE!

Typical GA Operation -- Overview

Initialize population at random

Evaluate fitness of new 
chromosomes

Perform crossover and 
mutation on parents

Select survivors (parents) 
based on fitness

Good
Enough? DoneYes

No

A GA Evolves the Flywheel:

One                Choice of            Choice

Material            Materials           (side view)
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Prior to Lohn’s evolution
of a design, a contract had 
been awarded for 
designing the antenna.
Result: this quadrifilar
helical antenna (QHA).

Radiator

Under the ground 
plane: matching and 

phasing network

Another Example:  NASA ST5 Quadrifilar
Helical Antenna:

Given a Desired Pattern, Design the Antenna

2nd Set of Evolved Antennas
(Now Flying on 3 Satellites)

“Genetic Algorithm” --
Meaning?

 “classical or canonical” GA -- Holland 
(taught in ‘60’s, book in ‘75) -- binary 
chromosome, population, selection, 
crossover (recombination), low rate of 
mutation
More general GA:  population, selection, 

(+ recombination) (+ mutation) -- may be 
hybridized with LOTS of other stuff

Representation Terminology

 Classically, binary string: individual or 
chromosome

 What’s on the chromosome is GENOTYPE
 What it means in the problem context is the 

PHENOTYPE (e.g., binary sequence may map to 
integers or reals, or order of execution, or inputs 
to a simulator, etc.)

 Genotype determines phenotype, but phenotype 
may look very different
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Discretization – Representation 
Meets Mutation!

 If problem is binary decisions, bit-flip mutation  is fine
 BUT if using binary numbers to encode integers, as in 

[0,15]  [0000, 1111], problem with Hamming cliffs:
 One mutation can change 6 to 7:  0110  0111, 

BUT
 Need 4 bit-flips to change 7 to 8:  0111  1000
 That’s called a “Hamming cliff”

 May use Gray (or other distance-one) codes to 
improve properties of operators: for example: 000, 
001, 011, 010, 110, 111, 101, 100

Mutation Revisited

On “parameter encoded” representations
 Binary ints

 Gray codes and bit-flips
 Or binary ints & 0-mean, Gaussian changes, etc.

 Real-valued domain
 Can discretize to binary -- typically powers of 2 

with lower, upper limits, linear/exp/log scaling
 End result (classically) is a bit string

 BUT many now work with real-valued GAs, non-bit-
flip (0-mean, Gaussian “noise”) mutation operators

Defining Objective/Fitness 
Functions

 Problem-specific, of course
 Many involve using a simulator
 Don’t need to know (or even HAVE)  derivatives
 May be stochastic
 Need to evaluate thousands of

times, so can’t be TOO 
COSTLY

 For real-world, evaluation 
time is typical bottleneck

 Example:  simple fitness 
criterion, but complex to 
calculate:  

Back to the “What” Function?

 In problem-domain form -- “absolute” or “raw”
fitness, or evaluation or performance or objective
function

 Relative fitness (to population), may require 
inverting and/or offsetting, scaling the objective 
function, yielding the fitness function.  Fitness
should be MAXIMIZED, whereas the objective 
function might need to be MAXIMIZED OR 
MINIMIZED.
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Selection

In a classical, “generational” GA:
 Based on fitness, choose the set of individuals 

(the “intermediate” population) that will soon:
 survive untouched, or
 be mutated, replaced, or
 in pairs, be crossed over and possibly 

mutated, with offspring replacing parents
One individual may appear several times in the 
intermediate population (or the next population)

Scaling of Relative Fitnesses

 Trouble:  as evolution progresses, relative 
fitness differences get smaller (as 
chromosomes get more similar to each 
other – population is converging).  Often 
helpful to SCALE relative fitnesses to keep 
about same ratio of best guy/average guy, 
for example.

OR, use Another Type of 
Selection

Proportional, using relative fitness (examples):
 “roulette wheel” -- classical Holland -- chunk of wheel ~ 

relative fitness
 stochastic uniform sampling -- better sampling -- integer 

parts GUARANTEED; still proportional
OR, NOT requiring relative fitness, nor fitness scaling:
 tournament selection
 rank-based selection (proportional to rank or all above 

some threshold)
 elitist (mu, lambda) or (mu+lambda) from ES

Explaining Why a GA Works –
Intro to GA Theory

 Just touching the surface with two 
classical results:
 Schema theorem – how search effort is 

allocated
 Implicit parallelism – each evaluation 

provides information on many possible 
candidate solutions
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What is a GA DOING?  (Schemata 
and Hyperstuff)

 Schema -- adds “*”, means “don’t care”
 One schema, two schemata
 Definition: ORDER of schema H = o(H):   # of non-*’s
 Def.:  Defining Length of schema,  distance between

first and last non-* in a schema; for example:  
 (**1*01*0**) = 5       (= number of positions where 1-pt 
crossover can disrupt it).
(NOTE:  diff. xover diff. relationship to defining length)

 Strings or chromosomes are order L schemata, where L is 
length of chromosome (in bits or loci).  Chromosomes are 
INSTANCES (or members) of lower-order schemata

Vertices are order ? schemata

Edges are order ? schemata

Planes are order ? schemata

Cubes (a type of hyperplane) 
are order ? schemata

8 different order-1 schemata 
(cubes):  0***, 1***, *0**, 
*1**, **0*, **1*, ***0, ***1

Cube and Hypercube

Hypercubes, Hyperplanes, Etc.

 A string is an instance of how many 
schemata (a member of how many 
hyperplane partitions)? (not counting the 
“all *’s,” per Holland)
 If L=3, then, for example, 111 is an 

instance of how many (and which) 
schemata:  7 schemata
 23-1

GA Sampling of Hyperplanes

So, in general, string of length L is an instance 
of 2L-1 schemata

But how many schemata are there in the whole 
search space?

(how many choices each locus?)
Since one string instances 2L-1 schemata, how 

much does a population tell us about schemata 
of various orders? 

Implicit parallelism: one string’s fitness tells us 
something about relative fitnesses of more than 
one schema.
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Fitness and Schema/ 
Hyperplane Sampling

 Look at next figure (from Whitley 
tutorial), for another view of hyperspaces

Whitley’s illustration of 
various partitions of 
fitness hyperspace

Plot fitness versus one 
variable discretized as a 
K = 4-bit binary 
number: then get 

First graph shades 0***

Second superimposes 
**1*, so crosshatches 
are ?

Third superimposes 
0*10

Fitness and Schema/ Hyperplane Sampling

How Do Schemata Propagate?

 Via instances -- only STRINGS appear in 
pop – you’ll never actually see a schema
 But, in general, want schemata whose 

instances have higher average fitnesses
(even just in the current population in 
which they’re instanced) to get more 
chance to reproduce.  That’s how we make 
the fittest survive!

Proportional Selection Favors 
“Better” Schemata

 Select the INTERMEDIATE population, the “parents”
of the next generation, via fitness-proportional selection

 Let M(H,t) be number of instances (samples) of schema 
H in population at time t.  Then fitness-proportional 
selection yields an expectation of:

 In an example, actual number of instances of schemata 
(next page) in intermediate generation tracked expected 
number pretty well, in spite of small pop size

f
tHftHMintermedtHM ),(),(),( 
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Results of example run (Whitley) showing that observed numbers 
of instances of schemata track expected numbers pretty well

Now, What Does
CROSSOVER Do to Schemata

 One-point Crossover Examples (blackboard)
11******** and 1********1

 Two-point Crossover Examples (blackboard)
(rings)

 Closer together loci are, less likely to be disrupted 
by crossover.  A “compact representation” tends to 
keep alleles together under a given form of 
crossover (minimizes probability of disruption).

Linkage and Defining Length

 Linkage -- “coadapted alleles”
(generalization of a compact representation
with respect to schemata)
 Example, convincing you that probability 

of disruption by 1-point crossover of 
schema H of length (H) is (H)/(L-1):

1****01**1

The Fundamental Theorem of Genetic 
Algorithms -- “The” Schema Theorem

Holland published in ANAS in 1975, had taught it 
much earlier (by 1968, for example, when I 
started Ph.D. at UM)

It provides lower bound on change in sampling rate 
of a single schema from generation t to t+1.  
We’ll consider it in several steps, starting from 
the change caused by selection alone:

f
tHftHMintermedtHM ),(),(),( 
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Schema Theorem Derivation (cont.)

Now we want to add effect of crossover:
A fraction pc of pop undergoes crossover, so:

Conservative assumption: crossover within the 
defining length of H is always disruptive to H, 
and will ignore gains (we’re after a LOWER 
bound -- won’t be as tight, but simpler).  Then:

])1(),([),()1()1,( ),(),( gainslossestHMptHMptHM
f
tHf

cf
tHf

c 

)]1(),([),()1()1,( ),(),( sdisruptiontHMptHMptHM
f
tHf

cf
tHf

c 

Schema Theorem Derivation (cont.)

Whitley adds a non-disruption case that Holland ignored:
If cross instance of H with another, anywhere, get no 

disruption.  Chance of doing that, drawing second 
parent at random, is P(H,t) = M(H,t)/popsize:  so prob. 
of disruption by x-over is:

Then can simplify the inequality, dividing by popsize and 
rearranging re pc:

So far, we have ignored mutation and assumed second 
parent is chosen at random.  But it’s interesting, already.

)),(1(1
)( tHPL

H 


))],(1(1[),()1,( 1
)(),( tHPptHPtHP L

H
cf

tHf  


Schema Theorem Derivation (cont.)

Now, we’ll choose the second parent based on 
fitness, too:

Now, add effect of mutation.  What is probability 
that a mutation affects schema H?  (Assuming 
mutation always flips bit or changes allele):

Each fixed bit of schema (o(H) of them) changes 
with probability pm, so they ALL stay 
UNCHANGED with probability: 

)]),(1(1[),()1,( ),(
1
)(),(

f
tHf

L
H

cf
tHf tHPptHPtHP  



)()1( Ho
mp

Schema Theorem Derivation (cont.)

Now we have a more comprehensive 
schema theorem:

People often use Holland’s earlier, simpler, 
but less accurate bound, first 
approximating the mutation loss factor as 
(1-o(H)pm), assuming pm<<1.

)(),(
1
)(),( )1)](),(1(1[),()1,( Ho

mf
tHf

L
H

cf
tHf ptHPptHPtHP  
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Schema Theorem Derivation (cont.)

That yields:

But, since pm<<1, we can ignore small cross-
product terms and get:

That is what many people recognize as the 
“classical” form of the schema theorem.

What does it tell us?

])(1][1[),()1,( 1
)(),(

mL
H

cf
tHf pHoptHPtHP  
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Using the Schema Theorem

Even a simple form helps balance initial selection 
pressure, crossover & mutation rates, etc.:

Say relative fitness of H is 1.2, pc = .5, pm = .05 and 
L = 20:  What happens to H, if H is long?  
Short?  High order?  Low order?

Pitfalls: slow progress, random search, premature 
convergence, etc.

Problem with Schema Theorem – important at 
beginning of search, but less useful later...

])(1[),()1,( 1
)(),(

mL
H

cf
tHf pHoptHPtHP  



Building Block Hypothesis

Define a Building block as:  a short, low-order, high-
fitness schema

BB Hypothesis:  “Short, low-order, and highly fit 
schemata are sampled, recombined, and resampled
to form strings of potentially higher fitness… we 
construct better and better strings from the best 
partial solutions of the past samplings.”

-- David Goldberg, 1989
(GA’s can be good at assembling BB’s, but GA’s are 

also useful for many problems for which BB’s are 
not available)

Using the Schema Theorem to Exploit 
the Building Block Hypothesis

For newly discovered building blocks to be 
nurtured (made available for combination with 
others), but not allowed to take over population 
(why?):

 Mutation rate should be:                                        
(but contrast with SA, ES, (1+), …)

 Crossover rate should be:
 Selection should be able to:
 Population size should be (oops – what can we 

say about this?… so far… infinity is large…):

852



Traditional Ways to Do GA 
Search…

 Population “large”
Mutation rate (per locus) ~ 1/L
 Crossover rate moderate (<0.3) or high 

(per DeJong, .7, or up to 1.0)
 Selection scaled (or rank/tournament, etc.) 

such that Schema Theorem allows new 
BB’s to grow in number, but not lead to 
premature  convergence

Schema Theorem and 
Representation/Crossover Types

If we use a different type of representation 
or different crossover operator:
 Must formulate a different schema 

theorem, using same ideas about 
disruption of some form of “schemata”

Uniform Crossover & Linkage
 2-pt crossover is superior to 1-point
 Uniform crossover chooses allele for each locus at 

random from either parent
 Uniform crossover is thus more disruptive than 1-pt or 

2-pt crossover
 BUT uniform is unbiased relative to linkage
 If all you need is small populations and a “rapid 

scramble” to find good solutions, uniform xover
sometimes works better – but is this what you need a GA 
for?  Hmmmm…

 Otherwise, try to lay out chromosome for good linkage, 
and use 2-pt crossover (or Booker’s 1987 reduced 
surrogate crossover, (described later))

The N3 Argument (Implicit or 
Intrinsic Parallelism)

Assertion:  A GA with pop size N can usefully 
process on the order of N3 hyperplanes
(schemata) in a generation.

(WOW! If N=100, N3 = 1 million)
To elaborate, assume:
 Random population of size N. 
 Need  instances of a schema to claim we are 

“processing” it in a statistically significant way 
in one generation.
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The N3 Argument (cont.)

Example:  to have 8 samples (on average) of 2nd

order schemata in a pop., (there are 4 distinct 
(CONFLICTING) schemata in each 2-position pair 
– for example, *0*0**, *0*1**, *1*0**, *1*1**), 
we’d need 4 bit patterns x 8 instances = 32 popsize.

In general, the highest ORDER of schema,   ,  that is 
“processed” is log (N/); in our case, log(32/8) = 
log(4) = 2. (log means log2)

θ

The N3 Argument (cont.)

Instead of general case, Fitzpatrick & Grefenstette argued:
 Assume 
 Pick =8, which implies 
 By inspection (plug in N’s, get   ’s, etc.), the number of 

schemata processed is greater than N3.  For example, N=64, 
# schemata order 3 or less is > 2**61 > 64**3 = 2**18 = 
256K.

 So, as long as our population size is REASONABLE (64 to 
a million) and L is large enough (problem hard enough), 
the argument holds.  

 But this deals with the initial population, and it does not 
necessarily hold for the latter stages of evolution.  Still, it 
may help to explain why GA’s can work so well…

206 22and64  NL
17θ3 

θ

Exponentially Increasing Sampling 
and the K-Armed Bandit Problem

Question:  How much sampling should above-average 
schemata get?

Holland showed, subject to some conditions, using analysis 
of problem of allocating choices to maximize reward 
returned from slot machines (“K-Armed Bandit 
Problem”) that:

• Should allocate an exponentially increasing fraction of 
trials to above-average schemata

• The schema theorem says that, with careful choice of 
population size, fitness measure, crossover and mutation 
rates, a GA can do that:

• (Schema Theorem says M(H,t+1) >= k M(H,t))
That is, H’s instances in population grow exponentially, as 
long as small relative to pop size and k>1 (H is a “building 
block”).

Want More GA Theory?

Vose and Liepins (’91) produced best-known 
model, looking at a GA as a Markov chain – the 
fraction of population occupying each possible 
genome at time t is the state of the system.  It’s 
“correct”, but difficult to apply for practical 
guidance.

Shapiro and others have developed a model based 
on principles of statistical mechanics

Lots of others work on aspects of GA theory
Attend other GECCO tutorials or the FOGA 

Workshop for more theory!
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What are Common Problems 
when Using GAs in Practice?

 Hitchhiking:  
BB1.BB2.junk.BB3.BB4: 
junk adjacent to building 
blocks tends to get “fixed” –
can be a problem

 Deception:  a 3-bit 
deceptive function

 Epistasis:  nonlinear effects, 
more difficult to capture if 
spread out on chromosome

0
1
2
3
4
5
6
7
8
9

10

'000 '001 '010 '011 '100 '101 '110 '111

In PRACTICE – GAs Do a JOB

 DOESN’T mean necessarily finding global optimum
 DOES mean trying to find better approximate answers 

than other methods do, within the time available!
 People use any “dirty tricks” that work:

 Hybridize with local search operations
 Use multiple populations/multiple restarts, etc.
 Use problem-specific representations and operators

 The GOALS:  
 Minimize # of function evaluations needed
 Balance exploration/exploitation so get best answer can during 

time available (AVOIDING premature convergence)

Other Forms of GA

Generational vs. “Steady-State”
 “Generation gap”: 1.0 means replace ALL 

by newly generated “children”
 at lower extreme, generate 1 (or 2) 

offspring per generation (called “steady-
state”) – no real “generations” – children 
ready to become parents on next operation

More Forms of GA

Replacement Policy:
1. Offspring replace parents
2. K offspring replace K worst ones
3. Offspring replace random individuals in 

intermediate population
4. Offspring are “crowded” in
5. “Elitism” – always keep best K
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Crowding

Crowding (DeJong) helps form “niches” and reduce 
premature takeover by fit individuals

For each child:
 Pick K candidates for replacement, at random, 

from intermediate population
 Calculate pseudo-Hamming distance from child to 

each
 Replace individual most similar to child
Effect?

Example GA Packages –
GENITOR (Whitley)

 Steady-state GA
 Two-point crossover, reduced surrogates
 Child replaces worst-fit individual
 Fitness is assigned according to rank (so 

no scaling is needed)
 (elitism is automatic)

Example GA Packages –
CHC (Eshelman)

 Elitism -- (+) from ES:  generate offspring from
parents, keep best of the + parents and 
children.

 Uses incest prevention (reduction) – pick mates on 
basis of their Hamming dissimilarity

 HUX – form of uniform crossover, highly disruptive
 Rejuvenate with “cataclysmic mutation” when 

population starts converging, which is often (small 
populations used)

 No mutation

Hybridizing GAs – a Good Idea!

IDEA:  combine a GA with local or problem-
specific search algorithms

HOW:  typically, for some or all individuals, start 
from GA solution, take one or more steps 
according to another algorithm, use resulting 
fitness as fitness of chromosome.

If also change genotype, “Lamarckian;” if don’t, 
“Baldwinian” (preserves schema processing)

Helpful in many constrained optimization 
problems to “repair” infeasible solutions to 
nearby feasible ones
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Other Representations/Operators:
Permutation/Optimal Ordering

 Chromosome has EXACTLY ONE copy 
of each int in [0,N-1]
Must find optimal ordering of those ints
 1-pt, 2-pt, uniform crossover ALL useless
Mutations:  swap 2 loci, scramble K 

adjacent loci, shuffle K arbitrary loci, etc.

Crossover Operators for 
Permutation Problems

What properties do we want:
 1) Want each child to combine 

building blocks from both parents in a 
way that preserves high-order 
schemata in as meaningful a way as 
possible, and
 2) Want all solutions generated to be 

feasible solutions.

Operators for Permutation-Based 
Representations, Using TSP Problem:

Example:  PMX -- Partially Matched Crossover

 2 sites picked, intervening section specifies 
“cities” to interchange between parents:

 A =     9 8 4 | 5 6  7  | 1 3 2 10
 B =     8 7 1 | 2 3 10 | 9 5 4  6
 A’ =    9 8 4 | 2 3 10 | 1 6 5  7
 B’ =  8 10 1 | 5 6  7  | 9 2 4  3

 (i.e., swap 5 with 2, 6 with 3, and 7 with 10 in both 
children.)

 Thus, some ordering information from each parent 
is preserved, and no infeasible solutions are 
generated

 Only one of many specialized operators developed

Other Approaches for 
Combinatorial Problems

Choose a less direct representation that 
allows using traditional operators:
 Assign an arbitrary integer to each 

position on chromosome
 Order phenotype by sorting the integers
 Then ordinary crossover, mutation work 

fine, produce legal genotypes
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Parallel GAs
(Independent of Parallel Hardware)

Three primary models:  coarse-grain (island), fine-
grain (cellular), and micro-grain (trivial)

Trivial (not really a parallel GA – just a parallel
implementation of a single-population GA):  pass 
out individuals to separate processors for 
evaluation (or run lots of local tournaments, no 
master) – still acts like one large population

Coarse-Grain (Island) Parallel GA

N “independent” subpopulations, acting as if 
running in parallel (timeshared or actually on 
multiple processors)

Occasionally, migrants go from one to another, 
in pre-specified patterns

Strong capability for avoiding premature 
convergence while exploiting good 
individuals, if migration rates/patterns well 
chosen

Fine-Grain Parallel GAs

 Individuals distributed on cells in a tessellation, 
one or few per cell (often, toroidal checkerboard)

 Mating typically among near neighbors, in some 
defined neighborhood

 Offspring typically placed near parents
 Can help to maintain spatial “niches,” thereby 

delaying premature convergence
 Interesting to view as a cellular automaton

Refined Island Models –
Heterogeneous/ Hierarchical GAs

 For many problems, useful to use different 
representations/levels of refinement/types of 
models, allow them to exchange “nuggets”

 GALOPPS was first package to support this
 Injection Island architecture arose from this, 

now used in HEEDS, etc.
 Hierarchical Fair Competition is newest 

development (Jianjun Hu), breaking populations 
by fitness bands 
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Multi-Level GAs

 Island GA populations are on lower level, their 
parameters/operators/ neighborhoods on 
chromosome of a single higher-level population 
that controls evolution of subpopulations (for 
example, DAGA2, 1995)

 Excellent performance – reproducible 
trajectories through operator space, for example

Examples of Population-to-Population 
Differences in a Heterogeneous GA

 Different GA parameters (pop size, crossover 
type/rate, mutation type/rate, etc.)
 2-level or without a master pop

 Examples of Representation Differences:
 Hierarchy – one-way migration from least refined 

representation to most refined
 Different models in different subpopulations
 Different objectives/constraints in different subpops

(sometimes used in Evolutionary Multiobjective
Optimization (“EMOO”))

Multiobjective GAs

 Often want to address multiple objectives
 Can use a GA to explore the Pareto 

FRONT
Many approaches; Deb’s or Coello’s 

books are good places to start

How Do GAs Go Bad?

 Premature convergence
 Unable to overcome deception
 Need more evaluations than time permits
 Bad match of representation/mutation/crossover, 

making operators destructive
 Biased or incomplete representation
 Problem too hard
 (Problem too easy, makes GA look bad)
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So, in Conclusion…

 GAs can be easy to use, but not necessarily easy 
to use WELL

 Don’t use them if something else will work – it 
will probably be faster

 GAs can’t solve every problem, either…
 GAs are only one of several strongly related 

“branches” of evolutionary computation – and 
they all commonly get hybridized

 There’s lots of expertise at GECCO – talk to 
people for ideas about how to address YOUR 
problem using evolutionary computation
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