
1

Una-May OʼReilly
Evolutionary Design & Optimization Group

unamay@csail.mit.edu

Genetic Programming
A Tutorial Introduction

Copyright is held by the author/owner(s).
GECCO’11, July 12–16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

Genetic Programming Tutorial: GECCO 2011 1

Agenda
CONTEXT: Evolutionary computation and

algorithms
brief history
Evolutionary Algorithms: programming the biological evolutionary process
Genetic programming in relation to other evolutionary algorithms

1. Genetic evolution of executable expressions
2. Example: Block Stacking problem
3. Nuts and Bolts Descriptions of Algorithm

Components
4. Finish with more example problems
5. How does it work?
6. Issues and Challenges

Genetic Programming Tutorial: GECCO 2011 2

Neo-Darwinian Evolution

• Survival and thriving in the environment
• Offspring quantity - based on survival of the fittest
• Offspring variation: genetic crossover and mutation
• Population-based adaptation over generations

Genetic Programming Tutorial: GECCO 2011 3

Problem Types and Applications
• Generating complex solutions - evolution is a

process that gives rise to complexity
– a continually evolving, adapting process, potentially with

changing environment from which emerges modularity,
hierarchy, complex behavior and complex system
relationships

• GA: discrete variables - Combinatorial optimization
– NP-complete and/or poorly scaling solutions via LP or

convex optimization
– unyielding to approximations (SQP, GEO-P)
– eg. TSP, graph coloring, bin-packing, flows
– for: logistics, planning, scheduling, networks, bio gene

knockouts

861

2

Genetic Programming Tutorial: GECCO 2011 4

Problem Types and Applications
• ES: continuous variables: Continuous Optimization

– non-differentiable, discontinuous, multi-modal, large scale
objective functions

– for: engineering, mechanical, material, physics
• Genetic Programming

– system identification: chemical processes, financial
strategies

– design: creative blueprints, generative designs - antennae,
Genr8, chairs, lens

– automatic programming: compiler heuristics
– AI ODEs, invariants, knowledge discovery

Genetic Programming Tutorial: GECCO 2011 5

Key EA Components

POPULATION
array of struct ind with
fields genome,
phenotype fitness
random initialization

GENOME is an array of gene(s)
GENOME is input parameter to
decoder procedure that returns
PHENOME
PHENOME is input parameter to
fitness-evaluation routine that
returns a numeric variable called
FITNESS

Ind
• genome
•phenotype
• fitness

Ind
• genome
•phenotype
• fitness

Ind
• genome
•phenotype
• fitness

Population

decoder

fitness

genes
GENOME

phenotype
Fitness

Function

Genotype-Phenotype Mapping

Genetic Programming Tutorial: GECCO 2011 6

EA Examples

Problem Gene Genome Phenotype Fitness
Function

TSP 110 sequence of cities tour tour length

Function
optimization 3.21 variables x of

function f(x) |min-f(x)|

graph
k-coloring

permutation
element

sequence for greedy
coloring coloring # of uncolored nodes

investment
strategy rule agent rule set trading strategy portfolio change

Genetic Programming Tutorial: GECCO 2011 7

EA Generation Loop
generations

select

breed

replace

population = random_pop_init()

generation = 0

while needToStop == false

generation++

phenotypes =decoder(genotypes)

calculateFitness(phenotypes)

parents = select (phenotypes)

offspring = breed(genotypes)

population = replace(parents, offspring)

solution = bestOf(population)

862

3

Genetic Programming Tutorial: GECCO 2011 8

EA Selection

fittest program

least fit program

*We give the algorithm a “seed” for its RNG.

Principles:
• everyone has non-zero probability of
being an ancestor
• individual fitness relative to
population mean fitness or rank of
fitness is important
• Sometimes the best of a population is
always bred directly into next generation:
“elitism”

Some standard methods:
•Roulette wheel
•Tournament Selection

• n tournments of size k

Genetic Programming Tutorial: GECCO 2011 9

EA Selection

winner

player 1

player 2

player 3

player 4

4 player tournament

Genetic Programming Tutorial: GECCO 2011 10

EA Breeding
Replication of parent [inheritance]

mutation - [imperfect copy]

crossover - [sexual recombination]

genes
GENOME

Perfect Copy of GENOME

genes
GENOME

A B 0 A B 0
Parent offspring

2 parent crossover

A 0
Child 1

D 0 0
child 2

C 1B 1 1

A B 0 C 1

parent 1 parent 2

1 1 D 0 0

11 00 AA BB 55 33

Choose crossover points and apply mutation randomly
Use a random number generator

Genetic Programming Tutorial: GECCO 2011 11

EA Replacement
Deterministic
• use best of parents and offspring to replace parents
• replace parents with offspring

Stochastic
• some sort of tournament or fitness proportional choice
• hold a tournament with old pop and offspring
• run a tournament with parents and offspring

863

4

Genetic Programming Tutorial: GECCO 2011 12

EA Pseudocode
population.genotypes = random_pop_init()
population.phenotypes =decoder(population.genotypes)
population.fitness= calculate_fitness(population.phenotypes)

•generation = 0
•while needToStop == false

generation++
parents.genotypes = select (population.fitness)

offspring.genotypes = crossover_mutation(parents.genotypes)
offspring.phenotypes =decoder(offspring.genotypes)
offspring.fitness= calculate_fitness(offspring.phenotypes)
population = replace(parents.fitness, offspring.fitness)

solution = bestOf(population)

generations

select

breed

replace

birth

development

fitness for breeding

development

fitness for breeding

Genetic Programming Tutorial: GECCO 2011 13

Agenda
CONTEXT: Evolutionary computation and algorithms

brief history
Evolutionary Algorithms: programming the biological evolutionary process
Genetic programming in relation to other evolutionary algorithms

1. Genetic evolution of executable expressions
• as first introduced in 1988 by John R. Koza
• Executable expressions
• Operators and operands

2. Example: Block Stacking problem
• Definition
• Operators and operands
• What random solutions look like Block stacking
• Test cases and fitness function
• Evolved solutions

Genetic Programming Tutorial: GECCO 2011 14

Agenda
3. Nuts and Bolts Descriptions of Algorithm Components

– Initialization of population of random expressions
– Selection of operators and operands
– Closure and sufficiency

– Fitness of an expression
– Genetic crossover and mutation
– Selection
– Prepartory Steps of GP
– Control parameters of a GP-tree “run”

4. Finish with more example problems
• Symbolic regression, (simple, with constants)

5. How does it work?
6. Issues and Challenges

• Problems and solutions for tree overhead
• Alternate representations for expression genome

• Linear and graph-based genomes

Genetic Programming Tutorial: GECCO 2011 15

GP: Evolution of executable expressions

As introduced in 1988 by John R. Koza
– Operators and operands were derived from lisp built-in

functions, problem oriented high-level “language”
– Expression genomes represented as trees,

» What are expressions and expression trees?
» What are GP operators and operands?

864

5

Genetic Programming Tutorial: GECCO 2011 16

• Context of an interpreter or compiler
– 3+2
– (+ 2 3) ; same as above, different syntax
– 3 + square(a)
– myFunction(arg1 arg2) - could have side effect!

• Note that expressions have a universal way of
being described via a tree
– Tree traversal order creates syntax and control flow

Common terminology and my terms today

Executable Expressions

GenotypeWhat is executableComponents

structure
structure

structureTerminalsFunctions
expressionOperandsOperators

Genetic Programming Tutorial: GECCO 2011 17

Expressions as Trees

• Whether parsed preorder (node, left-child, right-child) or
postorder (left-child, right-child, node) or inorder (left, node, right)
the expression evaluates to the same result

Inorder: 2+3

preorder: + 2 3

Post-order: 2 3 + Inorder: (2-3) + (max a best)

preorder: (+ (-2 3) (max a best))

Post-order: (2 3 -) (a best max) +)

+
2 3

+
- max

2 3 a best

•(tree)GP uses an expression tree as its genotype structure

Genetic Programming Tutorial: GECCO 2011 18

Operators and operands in GP
GP uses operators and

operands as the genetic
material of its expressions

Possible Operators
• Arithmetic: +, - , div, mult
• Transcendental: log, exp,
• Trigonometric: cos, sine,
• Variable assignment

– (setq a 10)
– (seta 10)

• Register read and write
• Index memory r/w

• Conditionals
– If <pred> <then>
– Ifpred <then>

• Iteration
– Do-until action predicate
– Over X
– Reverse-Over X

• Specialized Subroutines,
Procedures, or functions
from the problem domain

Genetic Programming Tutorial: GECCO 2011 19

The Block Stacking Problem

Goal: a plan to rearrange the current state of stack and table
 into the goal stack

Current State

A

C

F
E

D B

stack

table

table

Goal Stack

A

B
C

D

E
F

stack

Koza-92

865

6

Genetic Programming Tutorial: GECCO 2011 20

Block Stacking Problem:
 Operators and Operands

• State (updated via side-
effects)
– *currentStack*
– *currentTable*

• The operands
– Each block by label

• Operators returning a block
based on current stack
– top-block
– next-needed
– top-correct

• Block Move Operators
return boolean
– Return nil if they do

nothing, t otherwise
– Update *currentTable* and

currentStack
– to-stack(block)
– to-table(block)

• Sequence Operator returns
boolean
– Do-until(action, test)

» Macro, iteration timeouts
» Returns t if test satisified,

nil if timed out
• Boolean operators

– NOT(a), EQ(a b)

Genetic Programming Tutorial: GECCO 2011 21

Random Block Stacking Expressions

• eq(to-table(top-block) next-needed)
– Moves top block to table and returns nil

• to-stack(top-block)
– Does nothing

• eq(to-stack(next-needed)
 eq (to-stack(next-needed) to-stack(next-needed)
– Moves next-needed block from table to stack 3 times

• do-until(to-stack(next-needed)
 (not(next-needed))

- completes existing stack correctly (but existing
stack could be wrong)

Genetic Programming Tutorial: GECCO 2011 22

Fitness Cases
• different initial stack and table configurations

(Koza - 166)
– stack is correct but not complete
– top of stack is incorrect and stack is incomplete
– Stack is correct and partial then has blocks on top

that are wrong
• Each correct stack at end of expression

evaluation scores 1 “hit”
• fitness is number of hits (out of 166)

Genetic Programming Tutorial: GECCO 2011 23

Evolved Solutions to Block Stacking
eq(do-until(to-table(top-block) (not top-block))
 do-until(to-stack(next-needed) (not next-needed)

– first do-until removes all blocks from stack until it is empty and top-block
returns nil

– second do-until puts blocks on stacks correctly until stack is correct and
next-needed returns nil

– eq is irrelevant boolean test but acts as connective
– wasteful in movements whenever stack is correct

• Add a fitness factor for number of block movements
do-until(eq (do-until (to-table(top-block)
 (eq top-block top-correct))
 (do-until (to-stack(next-needed) (not next-needed))
 (not next-needed)

– Moves top block of stack to table until stack is correct
– Moves next needed block from table to stack
– Eq is again a connective, outer do-until is harmless, no-op

866

7

Genetic Programming Tutorial: GECCO 2011 24

Agenda Checkpoint
• Introduced to evolutionary algorithm
• GP is an EA that evolves executable expressions composed of

operators and operands
– Expressions and their parse trees

• The block stacking problem
– Definition
– Operators and operands
– Fitness of a block stacking expression
– GP-evolved solutions to block stacking problem

• Next,
– How can we create random GP expressions?
– How can we create a diverse population of expressions?
– What is general procedure for fitness function design?
– How do we mutate and crossover expressions?
– Selection?

Genetic Programming Tutorial: GECCO 2011 25

Population Initialization
• Fill population with random expressions

– Create a operator set and a corresponding argument-count set
– Create an operand set (arg-count = 0)
– draw from operator set with replacement and recursively

enumerate operatorʼs argument list by additional draws from
operators U operands.

– Recursion ends at draw of an operand
– requires closure and/or typing

• maximum tree height parameter
– At max-height-1, draw from operands only

• “ramped half-half” method ensures diversity
– equal quantities of trees of each height
– half of heightʼs trees are full

» For full tree, only draw from operands at max-height-1

Genetic Programming Tutorial: GECCO 2011 26

Things to Ensure to Evolve Programs
• Sufficiency: the operators and operands that can form

executable expressions must be adequate to formulate a
solution to the problem
– I have my students hand code some solution (though not

necessarily correct)
– Operands are usually problemʼs decision variables
– Operators must be wisely chosen but not too complex

» primitives like arithmetic, boolean, condition, iteration, assignment
» Problem specific (eg next-needed)

• Closure: all functions must be coded so that they can accept
parameters of any type
– In block stacking, we can handle boolean or block

• Programs of varying length and structure must compose the
search space

• Crossover of the genotype must preserve syntactic correctness
so the program can be directly executed

Genetic Programming Tutorial: GECCO 2011 27

Determining a Expressionʼs Fitness
• One test case:

– Execute the expression with the problem decision variables (ie
operands) bound to some test value and with side effect values
initialized

– Designate the “result” of the expression
• Measure the error between the correct output values for the

inputs and the final outputs of the expression
– Final output may be side effect variables, or return value of

expression
– Eg. Examine currentStack vs goalstack for block stacking
– Eg. the heuristic in a compilation, run the binary with different

inputs and measure how fast they ran.
– EG, Configure a circuit from the genome, test the circuit with an

input signal and measure response vs desired response
• Usually have more than one test case but cannot enumerate

them all
– Use rational design to create incrementally more difficult test cases

(eg block stacking)
– Use balanced data for regression

867

8

Genetic Programming Tutorial: GECCO 2011 28

Genotype Representation: Tree
• Required: Crossover of the genotype must preserve syntactic

correctness so the program can be directly executed
• Given: expression are created from provided “language” of

operators and operands (aka primitives, functions & terminals)
• Solution: Genetically manipulate program in an expression tree

representation
• convenient for LISP or Scheme where this is expression tree
• (if (and (< t1 t2) (= t3 t4) 0 5)

if

0

 t1

 <

 t2 t3

=

t4

5 and

Genetic Programming Tutorial: GECCO 2011 29

Tree Crossover
if

S

t2

Tnot

sumsum

>

t1 t5

Parent 2

if
G

av
<

t2

Rand

t1

sumsum

>

t1 t5

Child 1

t3
=

max

t4

if

S Tnot

Child 2

if

G

av
<

t2 t3
=

max

t4

and

t1

Parent 1

R

Genetic Programming Tutorial: GECCO 2011 30

Tree Crossover Details
• Crossover point in each

parent is picked at random
• Conventional practices

– All nodes with equal
probability

– leaf nodes chosen with 0.1
probility and non-leaf with
0.9 probability

• Probability of crossover
– Typically 0.9

• Maximum depth of child is a
run parameter
– Typically ~ 15
– Can be size instead

• Two identical parents rarely
produce offspring that are
identical to them

• Tree-crossover produces
great variations in offspring
with respect to parents

• Crossover, in addition to
preserving syntax, allows
expressions to vary in length
and structure (sub-
expression nesting)

• “raw power”
•

Genetic Programming Tutorial: GECCO 2011 31

Tree Mutation
• Often only crossover is used
• But crossover behaves often like macro-mutation
• Mutation can be better tuned to control the size of the

change
• A few different versions

868

9

Genetic Programming Tutorial: GECCO 2011 32

HVL-Mutation:
substitution, deletion, insertion

if

G

av
<

t2 t3
=

max

t4

and

t1

Parent

R
if

G

av
<

t2 t1
=

max

t4

and

t1

Mutant-subst

R

if

G

av
<

t2 t3
=

t4

and

t1

Mutant-deletion
R

if

G

av
<

t2

t3

=
max

t4

and

t1

Mutant-addition
R

max

Genetic Programming Tutorial: GECCO 2011 33

Other sorts of mutation
• Koza:

– Randomly remove a sub-tree and replace it
– Permute: mix up order of args to operator
– Edit: + 1 3 -> 4, and(t t) -> t
– Encapsulate: name a sub-tree, make it one node and allow

re-use by others (protection from crossover)
» Developed into advanced GP concept known as

 Automatic module definition
 Automatically defined functions (ADFs)

• Make your own
– Could even be problem dependent (what does a subtree do?

Change according to its behavior)

Genetic Programming Tutorial: GECCO 2011 34

Selection in Genetic Programming
• Proceeds in same manner as evolutionary algorithm

– Same set of methods
– Conventionally use tournament selection
– Also see fitness proportional selection
– Cartesian genetic programming:

» One parent: generate 5 children by mutation
» Keep best of parents and children and repeat

 If parent fitness = child fitness, keep child

Genetic Programming Tutorial: GECCO 2011 35

Top Level GP Algorithm
Begin

pop = random programs from a set of operators and operands
repeat

execute each program in pop with each set of inputs
measure each program’s fitness
repeat

select 2 parents
copy 2 offspring from parents

crossover
mutate

add to new-pop
until pop-size

pop = new-pop
until max-generation

or
 adequate program found

End

Grow or Full

•Tournament selection
•Fitness proportional selection
•Your favorite selection

Ramped-half-half

Prepare input data
Designate solution
Define error between actual
and expected

Sub-tree crossover•HVL-mutate
•Subtree subst
•Permute
•Edit
•Your own

Max-init-tree-height

Prob to crossover

Max-tree-height

Mutation probs

Tournament size

869

10

Genetic Programming Tutorial: GECCO 2011 36

GP Preparatory Steps
1. Decide upon operators and operands
2. Set up the fitness function
3. Decide upon run parameters
4. Determine settings for the parameters

Genetic Programming Tutorial: GECCO 2011 37

GP Parameters
• Population size
• Number of generations
• Max-height of trees on

random initialization
– Typically 6

• Probability of crossover
– Higher than mutation
– 0.9
– Rest of offspring are copied

• Probability of mutation
– Probabilities of addition,

deletion and insertion

• Population initialization
method
– Ramped-half-half
– All full
– All non-full

• Selection method
– Elitism?

• Termination criteria
• Fitness function
• what is used as “solution” of

expression

Genetic Programming Tutorial: GECCO 2011 38

Simple Symbolic Regression
• Given a set of independent decision

variables and corresponding values
for a dependent variable

• Want: a model that predicts the
dependent variable

– Eg: linear model with numerical
coefficients

» Y= aX1 + bX2 + c(X1X2)
– Eg: non-linear model

» y= a x12 + bx23

– Prediction accuracy: minimum error
between model prediction and actual
samples

• Usually: designer provides a model
and a regression (ordinary least
squares, Fourier series) determines
coefficients

• With genetic programming, the
model (structure) and the
coefficients can be learned

• Example: y=f(x)
• Domain of x [-1.0,+1.0]
• Choose the operands

– X
• Choose the operators

– +, - , *, / (protected)
– Maybe also sin, cos, exp, log

(protected)
• Fitness function: sum of absolute

error between yi, and expressionʼs
return values

• Prepare 20 points for test cases
• Test problem:

– Y=x4 + x3 + x2 + x
– GP can create coefficeints (x/x div

x+x = 1/2) but…

Genetic Programming Tutorial: GECCO 2011 39

Symbolic Regression with Numeric
Coefficients:Ephemeral Random Constants

• New Test problem:

– Y=3x4 + 10x3 + 2x2 + 3x

• requires constant creation
• Ephemeral random constants

provide GP with numerical
solution components

• Provide ERC set

• Include R among the operands.
When individual is to be
randomly created and R is
drawn, one of the elements in R
becomes the new operand.

• GP only has the constants
that are randomly drawn in
the initial population

• Constants could be lost
through the selection
process (no expression with
a constant survives
reproduction)

• But, GP has more primitive
material to work with

• It works…partially
• Issue with size of constants,

coordination of model and
coefficient search, as a
“clump” of numbers grows,
it is more vulnerable to
crossover disruption

!

R = {"10,"9,"8,...0...8,9,10}

870

11

Genetic Programming Tutorial: GECCO 2011 40

More Examples of Genetic Programming
• Evolve priority functions that

allow a compiler to
heuristically choose between
alternatives in hyper-block
allocation

• Evolve a model that predicts,
based on past market values,
whether a stockʼs value will
increase, decrease or stay
the same

• Optimal control:
– the frictionless cart, pole

balancing
– State of system comprises

operands set

– Operators are actions that
produce state change

• Artifical Ant
• Boolean Multiplexor
• Image compression

Genetic Programming Tutorial: GECCO 2011 41

How Does it Manage to Work
• Exploitation and exploration

– Selection
– Crossover

• Selection
– In the valley of the blind, the

one-eyed man is king
• Crossover: combining
• Kozaʼs description

– Identification of sub-trees as
sub-solutions

– Crossover unites sub-
solutions

• For simpler problems it does
work

• Current theory and empirical
research have revealed more
complicated dynamics

Genetic Programming Tutorial: GECCO 2011 42

Why are we still here?
Issues and Challenges

• Trees use up a lot of
memory

• Trees take a long time
to execute
– Change the language for

expressions
» C, Java

– Pre-compile the
expressions, PDGP (Poli)

– Store one big tree and
mark each pop member
as part of it

» Compute subtrees for
different inputs, store
and reuse

• Bloat: Solutions are full of
sub-expressions that may
never execute or that
execute and make no
difference

• Operator and operand sets
are so large, population is so
big, takes too long to run

• Runs “converge” to a non-
changing best fitness
– No progress in solution

improvement before a good
enough solution is found

Genetic Programming Tutorial: GECCO 2011 43

Runs “converge”: Evolvability
• Is an expression tree ideal for evolvability?
• Trees do not align, not mixing likes with likes as we

would do in genetic algorithm
• Biologically this is called “non-homologous”
• One-point crossover

– By Poli & Langdon
– Theoretically a bit more tractable
– Not commonly used
– Still not same kind of genetic material being swapped

871

12

Genetic Programming Tutorial: GECCO 2011 44

Evolvability: are there building
blocks?

• Does a tree or expression
have building blocks?
– Context sensitivity of sub-

expressions
– What is the “gene” or unit of

genetic transmission?
– Building blocks may come

and go depending on the
context in which they are
found

• Where does the Good Stuff
Go and Why?
– Goldberg and OʼReilly

• The semantics of the
operators influences the
shape of the expressed part
of the tree

• A look at two extremes:
– (iflte x a) -ORDER

» Context sensitive
– (+ a b) - MAJORITY

» Aggregation
• Even with this simplification,

predicting the dynamics is
difficult

• Will an imperative
expression language offer
better building blocks?

• Will a linear genome provide
less complicated genome
dynamics?

Genetic Programming Tutorial: GECCO 2011 45

Evolvability - modularity and reuse
• Expression tree must be big

to express reuse and
modularity

• Is there a better way to
design the genome to allow
modularity to more easily
evolve?

Genetic Programming Tutorial: GECCO 2011 46

Evolvability: modularity and reuse

Genetic Programming Tutorial: GECCO 2011 47

Register Machine Genotype
• linear genotype, varying length, direct data

CPU Registers

A B C
12288 56

genotypeb = b+c
a = a xor c
c = b*c
c = c-a

P1

P2

b=…

a=…

c=…

c=…

b=…

a=…

c=…

c=…

1
2
3

5
4

6
7
8

3

4
5
6

1
2

7
8

C1 C2

Crossover

872

13

Genetic Programming Tutorial: GECCO 2011 48

Register Machine Advantages
• Easier on memory and crossover handling
• Supports aligned “homologous” crossover
• Registers can act as poor-manʼs modules
• The primitive level of expressions allows for

– Potentially more easily identifiable building blocks
– Potentially less context dependent building blocks

• The register level instructions can be further
represented as machine instructions (bits) and run
native on the processor
– AIM-GP (Auto Induction of Machine Code GP)
– Intel or PPC or PIC, java byte code,
– Experience with RISC or CISC architectures
– Patent number: 5946673, DISCIPLUS system

Genetic Programming Tutorial: GECCO 2011 49

Cartesian Genetic Programming
• Julian Miller
• operators and operands are

nodes and data flow is
described by genome

• Fixed length genome but
variable length phenome
– Integers in blocks
– For each block, integers to

name inputs and operator
• Unexpressed genetic

material can be turned on
later

• No bloat observed (plus
nodes are upper bounded

Genetic Programming Tutorial: GECCO 2011 50

Dealing with Bloat
• Why does it occur?

– Crossover is destructive
– Effective fitness is selected

for
• Effective fitness

– Not just my fitness but the
fitness of my offspring

• Approaches
– Avoid - change genome

structure
– Remove: Kozaʼs edit

operation
– Penalize: parsimony

pressure
– Fitness =

» A(perf) + (1-a)(complexity

Examples:
• (not (not x))
• (+ x 0)
• (* x 1)
• (Move left move-right)
• If (2=1) action

No difference to fitness (defn
by Banzhaf, Nordin and
Keller)

Can be local or global

Genetic Programming Tutorial: GECCO 2011 51

Reference Material
Where to Find It Online
• ACM digital library: http://portal.acm.org/

– GECCO conferences,
– GP conferences,
– Evolutionary Computation Journal (MIT Press)

• IEEE digital library:
http://www.computer.org/portal/web/csdl/home
– Congress on Evolutionary Computation (CEC)
– IEEE Transactions on Evolutionary Computation

• Springer digital library: http://www.springerlink.com/
– European Conference on Genetic Programming: “EuroGP”

• Genetic Programming Bibiliography
– http://www.cs.bham.ac.uk/~wbl/biblio/

873

14

Genetic Programming Tutorial: GECCO 2011 52

Reference Material - Books
• Advances in Genetic Programming

– 3 years, each in different volume, edited
• Genetic Programming: From Theory to Practice

– 10 years, annual, on SpringerLink, edited
• John R. Koza

– Genetic Programming: On the Programming of Computers by Means of Natural
Selection, 1992 (MIT Press)

– Genetic Programming II: Automatic Discovery of Reusable Programs, 1994 (MIT Press)
– Genetic Programming III: Darwinian Invention and Problem Solving, 1999 with Forrest

H Bennett III, David Andre, and Martin A. Keane, (Morgan Kaufmann)
– Genetic Programming IV: Routine Human-Competitive Machine Intelligence, 2003 with

Martin A. Keane, Matthew J. Streeter, William Mydlowec, Jessen Yu, and Guido Lanza
• Genetic Programming: An Introduction, Banzhaf, Nordin, Keller,

Francone, 1997 (Morgan Kaufmann)
• Linear genetic programming, Markus Brameier, Wolfgang

Banzhaf, Springer (2007)
• A Field Guide to Genetic Programming, Poli, Langdon, McPhee,

2008, Lulu and online digitally

Genetic Programming Tutorial: GECCO 2011 53

Specific References in Tutorial
Books
• Adaptation in Natural and Artificial Systems, John H Holland, (1992), MIT

Press.
• Evolutionsstrategie, Ingo Rechenberg, (1994), Frommann-Holzboog.
• Artificial Intelligence through Simulated Evolution, L.J. Fogel, A.J. Owens,

and M.J. Walsh (1966), John Wiley, NY.
Academic Papers
• On the Search Properties of Different Crossover Operators in Genetic

Programming, Riccardo Poli and William B. Langdon, Genetic
Programming 1998: Proceedings of the Third Annual Conference, pp. 293-
301, Morgan Kaufmann, 22-25 July 1998.

• Where does the Good Stuff Go and Why? Goldberg and O’Reilly,
Proceedings of the First European Workshop on Genetic Programming,
LNCS, Vol. 1391, pp. 16-36, Springer-Verlag, 14-15 April 1998.

• Cartesian genetic programming, GECCO-2008 tutorials, pp. 2701-2726,
ACM, 12-16 July 2008.

The End

874

