Genetic Programming

A Tutorial Introduction

Una-May O’Reilly
Evolutionary Design & Optimization Group

GECCg

mmm Massachusetts %
I I Institute of . CSAIL
Technology Z&I |
Copyright is held by the author/owner(s).
GECCO'11, July 12-16, 2011, Dublin, Ireland.
ACM 978:1:4503:0600:4/11/07

Neo-Darwinian Evolution

¢ Survival and thriving in the environment

« Offspring quantity - based on survival of the fittest
« Offspring variation: genetic crossover and mutation
¢ Population-based adaptation over generations

Genetic Programming Tutorial: GECCO 2011 2

861

Agenda

CONTEXT: Evolutionary computation and
algorithms

brief history
Evolutionary Algorithms: programming the biological evolutionary process
Genetic programming in relation to other evolutionary algorithms

1. Genetic evolution of executable expressions
2. Example: Block Stacking problem

3. Nuts and Bolts Descriptions of Algorithm
Components

4. Finish with more example problems
How does it work?
6. Issues and Challenges

o

Genetic Programming Tutorial: GECCO 2011

Problem Types and Applications

¢ Generating complex solutions - evolution is a
process that gives rise to complexity
— a continually evolving, adapting process, potentially with
changing environment from which emerges modularity,
hierarchy, complex behavior and complex system
relationships
¢ GA: discrete variables - Combinatorial optimization
NP-complete and/or poorly scaling solutions via LP or
convex optimization
— unyielding to approximations (SQP, GEO-P)
eg. TSP, graph coloring, bin-packing, flows

for: logistics, planning, scheduling, networks, bio gene
knockouts

Genetic Programming Tutorial: GECCO 2011

Problem Types and Applications

< ES: continuous variables: Continuous Optimization

— non-differentiable, discontinuous, multi-modal, large scale
objective functions

— for: engineering, mechanical, material, physics
¢ Genetic Programming

— system identification: chemical processes, financial
strategies

— design: creative blueprints, generative designs - antennae,
Genr8, chairs, lens

— automatic programming: compiler heuristics
— Al ODEs, invariants, knowledge discovery

Genetic Programming Tutorial: GECCO 2011 4

EA Examples

Fitness
Problem n nom Phenot p
oblel Gene Genome ype Function
TSP 110 sequence of cities tour tour length
Function variables x_of .
optimization 3.21 function f(x) Imin-f(x)!
grapl'l permutation sequence f(:)r greedy coloring # of uncolored nodes
k-coloring element coloring
investment " "
strategy rule agent rule set trading strategy portfolio change
Genetic Programming Tutorial: GECCO 2011 6

862

Key EA Components

POPULATION END] END] END]
genome genome | @ @ @ | genome
= array of struct ind with sfiiness) sfiness +'ftness
fields genome, / N
phenotype fitness | | coo | | |
= random initialization
POPULATION
=« GENOME is an array of gene(s) GENES
= GENOME is input parameter to T ~BLhont
decoder procedure that returns PP —)‘ pEcopER]
PHENOME

» PHENOME is input parameter to
fitness-evaluation routine that

FuNcTION
FITNESS

returns a numeric variable called
GENOTYPE-PHENOTYPE MAPPING

Genetic Programming Tutorial: GECCO 2011

EA Generation Loop

« generations

population = random_pop_init()
generation = 0

«Select

while needToStop == false
lbreEd generation++

phenotypes =decoder(genotypes)
- replace calculateFitness(phenotypes)
parents = select (phenotypes)
offspring = breed(genotypes)
population = replace(parents, offspring)
solution = bestOf(population)

Genetic Programming Tutorial: GECCO 2011

EA Selection

least fit program

Principles:

« everyone has non-zero probability of
being an ancestor

« individual fitness relative to

population mean fitness or rank of
fitness is important

* Sometimes the best of a population is
always bred directly into next generation:
“elitism”

Some standard methods:
*Roulette wheel
*Tournament Selection

* n tournments of size k

*We give the algorithm a “seed” for its RNG.

Genetic Programming Tutorial: GECCO 2011 8

EA Selection

player |

winner

player 4

4 player tournament

Genetic Programming Tutorial: GECCO 2011

EA Breeding

= Replication of parent [inheritance] = crossover - [sexual recombination]
PARENT 1 PARENT 2
GENES GENES > »>
TF _GENOME iN_EENEME B
AB...O ;ABoooo A IIO CDOOI
v — v
PARENT OFFSPRING
PERFECT CoPY oF GENOME
Aploolo] [cglifi]
CHILD 1 CHILD

2 PARENT CROSSOVER

= mutation - [imperfect copy]

1 =0 A B 53

Choose crossover points and apply mutation randomly
Use a random number generator

Genetic Programming Tutorial: GECCO 2011 10

EA Replacement

Deterministic
* use best of parents and offspring to replace parents
* replace parents with offspring

Stochastic
* some sort of tournament or fitness proportional choice
* hold a tournament with old pop and offspring
* run a tournament with parents and offspring

Genetic Programming Tutorial: GECCO 2011

1"

EA Pseudocode

population.genotypes = random_pop_init()
population.phenotypes =decoder(population.genotypes)
population.fitness= calculate_fitness(population.phenotypes)

.generation = 0
-while needToStop == false
generation++

parents.genotypes = select (population.fitness)

birth

development

fitness for breeding

generations

select

offspring.genotypes = crossover_mutation(parents.genotypes) breed

offspring.phenotypes =decoder(offspring.genotypes)
offspring.fitness= calculate_fitness(offspring.phenotypes)

development

fitness for breeding

population = replace(parents.fitness, offspring.fitness) replace
.solution = bestOf(population)
Genetic Programming Tutorial: GECCO 2011 12
Agenda
3. Nuts and Bolts Descriptions of Algorithm Components
— Initialization of population of random expressions
— Selection of operators and operands
— Closure and sufficiency
— Fitness of an expression
— Genetic crossover and mutation
— Selection
— Prepartory Steps of GP
— Control parameters of a GP-tree “run”
4. Finish with more example problems
« Symbolic regression, (simple, with constants)
5. How does it work?
6. Issues and Challenges
* Problems and solutions for tree overhead
« Alternate representations for expression genome
¢ Linear and graph-based genomes
14

Genetic Programming Tutorial: GECCO 2011

864

Agenda

CONTEXT: Evolutionary computation and algorithms

brief history

o the y process
. Genetic programming in relation to other evolutionary algorithms

1. Genetic evolution of executable expressions
+ as first introduced in 1988 by John R. Koza
+ Executable expressions
* Operators and operands
2. Example: Block Stacking problem
+ Definition
+ Operators and operands
+ What random solutions look like Block stacking
+ Test cases and fitness function
+ Evolved solutions

Genetic Programming Tutorial: GECCO 2011 13

GP: Evolution of executable expressions

As introduced in 1988 by John R. Koza

— Operators and operands were derived from lisp built-in
functions, problem oriented high-level “language”

— Expression genomes represented as trees,
» What are expressions and expression trees?
» What are GP operators and operands?

Genetic Programming Tutorial: GECCO 2011 15

Executable Expressions

e Context of an interpreter or compiler
- 3+2
— (+23) ; same as above, different syntax
— 3 + square(a)
— myFunction(arg1 arg2) - could have side effect!
¢ Note that expressions have a universal way of
being described via a tree
— Tree traversal order creates syntax and control flow

Common terminology and my terms today

Components What is executable | Genotype
Operators Operands | expression structure
Functions Terminals | structure structure
Genetic Programming Tutorial: GECCO 2011 16
Operators and operands in GP
GP uses operators and ¢ Conditionals
operands as the genetic — If <pred> <then>
material of its expressions — lfpred <then>
Possible Operators o lteration
¢ Arithmetic: +, -, div, mult — Do-until action predicate
¢ Transcendental: log, exp, — Over X
« Trigonometric: cos, sine, — Reverse-Over X
« Variable assignment * Specialized Subroutines,
— (setqa10) Procedures, or functions
— (seta 10) from the problem domain
« Register read and write
¢ Index memory r/w
Genetic Programming Tutorial: GECCO 2011 18

865

Expressions as Trees

Inorder: 2+3 \ @
& ® e

Inorder: (2-3) + (max a best)

preorder: +2 3
Post-order: 2 3 +
preorder: (+ (-2 3) (max a best))

Post-order: (2 3 -) (a best max) +)

+ Whether parsed preorder (node, left-child, right-child) or
postorder (left-child, right-child, node) or inorder (left, node, right)
the expression evaluates to the same result

+(tree)GP uses an expression tree as its genotype structure

Genetic Programming Tutorial: GECCO 2011 17
. Koza-92
The Block Stacking Problem
Current State Goal Stack
stack
/
stack F
E
E table D
F table C
C B
A D B A
Goal: a plan to rearrange the current state of stack and table
into the goal stack
Genetic Programming Tutorial: GECCO 2011 19

Block Stacking Problem:
Operators and Operands

* State (updated via side- + Block Move Operators
effects) return boolean
— *currentStack* — Return nil if they do
_ *currentTable* nothing, t otherwise
— Update *currentTable* and

e The operands
— Each block by label

currentStack
— to-stack(block)

* Operators returning a block — to-table(block)
based on current stack « Sequence Operator returns
— top-block boolean
— next-needed — Do-until(action, test)
— top-correct » Macro, iteration timeouts

» Returns t if test satisified,
nil if timed out

« Boolean operators
- NOT(a), EQ(a b)

Genetic Programming Tutorial: GECCO 2011 20

Random Block Stacking Expressions

eq(to-table(top-block) next-needed)
— Moves top block to table and returns nil
« to-stack(top-block)
— Does nothing
* eq(to-stack(next-needed)
eq (to-stack(next-needed) to-stack(next-needed)
— Moves next-needed block from table to stack 3 times
¢ do-until(to-stack(next-needed)
(not(next-needed))
- completes existing stack correctly (but existing
stack could be wrong)

Genetic Programming Tutorial: GECCO 2011 21

Fitness Cases

 different initial stack and table configurations
(Koza - 166)
— stack is correct but not complete
— top of stack is incorrect and stack is incomplete

— Stack is correct and partial then has blocks on top
that are wrong

e Each correct stack at end of expression
evaluation scores 1 “hit”

« fitness is number of hits (out of 166)

Genetic Programming Tutorial: GECCO 2011 22

Evolved Solutions to Block Stacking

eq(do-until(to-table(top-block) (not top-block))
do-until(to-stack(next-needed) (not next-needed)

— first do-until removes all blocks from stack until it is empty and top-block
returns nil

— second do-until puts blocks on stacks correctly until stack is correct and
next-needed returns nil

— eqis irrelevant boolean test but acts as connective

— wasteful in movements whenever stack is correct
* Add a fitness factor for number of block movements
do-until(eq (do-until (to-table(top-block)

(eq top-block top-correct))
(do-until (to-stack(next-needed) (not next-needed))
(not next-needed)

— Moves top block of stack to table until stack is correct

— Moves next needed block from table to stack

— Eq is again a connective, outer do-until is harmless, no-op

Genetic Programming Tutorial: GECCO 2011 23

Agenda Checkpoint

* Introduced to evolutionary algorithm
* GP is an EA that evolves executable expressions composed of
operators and operands
— Expressions and their parse trees
¢ The block stacking problem
— Definition
— Operators and operands
Fitness of a block stacking expression
— GP-evolved solutions to block stacking problem
¢ Next,
— How can we create random GP expressions?
— How can we create a diverse population of expressions?
— What is general procedure for fitness function design?
— How do we mutate and crossover expressions?
— Selection?

Genetic Programming Tutorial: GECCO 2011 24

Things to Ensure to Evolve Programs

« Sufficiency: the operators and operands that can form
executable expressions must be adequate to formulate a
solution to the problem

— | have my students hand code some solution (though not
necessarily correct)

— Operands are usually problem’s decision variables
— Operators must be wisely chosen but not too complex
» primitives like arithmetic, boolean, condition, iteration, assignment
» Problem specific (eg next-needed)
¢ Closure: all functions must be coded so that they can accept
parameters of any type
— In block stacking, we can handle boolean or block
¢ Programs of varying length and structure must compose the
search space
« Crossover of the genotype must preserve syntactic correctness
so the program can be directly executed

Genetic Programming Tutorial: GECCO 2011 26

867

Population Initialization

 Fill population with random expressions
— Create a operator set and a corresponding argument-count set
— Create an operand set (arg-count = 0)

— draw from operator set with replacement and recursively
enumerate operator’s argument list by additional draws from
operators U operands.

— Recursion ends at draw of an operand
— requires closure and/or typing
* maximum tree height parameter
— At max-height-1, draw from operands only
* “ramped half-half” method ensures diversity
— equal quantities of trees of each height
— half of height’s trees are full
» For full tree, only draw from operands at max-height-1

Genetic Programming Tutorial: GECCO 2011 25

Determining a Expression’s Fitness

* One test case:

— Execute the expression with the problem decision variables (ie
operands) bound to some test value and with side effect values
initialized

— Designate the “result” of the expression

* Measure the error between the correct output values for the
|nputs and the final outputs of the expression
Final output may be side effect variables, or return value of
expression

— Eg. Examine currentStack vs goalstack for block stacking

— Eg. the heuristic in a compilation, run the binary with different
inputs and measure how fast they ran.

— EG, Configure a circuit from the genome, test the circuit with an
input signal and measure response vs desired response

¢ Usually have more than one test case but cannot enumerate
them all

— Use rational design to create incrementally more difficult test cases
(eg block stacking)

— Use balanced data for regression
Genetic Programming Tutorial: GECCO 2011 27

Genotype Representation: Tree

¢ Required: Crossover of the genotype must preserve syntactic
correctness so the program can be directly executed

« Given: expression are created from provided “language” of
operators and operands (aka primitives, functions & terminals)

« Solution: Genetically manipulate program in an expression tree
representation

« convenient for LISP or Scheme where this is expression tree

« (if (and (< t1 12) (= t314) 0 5)
(it)
Cand) &P
(=D (=2
CRACPIRCD

Genetic Programming Tutorial: GECCO 2011 28

Tree Crossover Details

* Crossover point in each * Two identical parents rarely
parent is picked at random produce offspring that are

« Conventional practices identical to them
— All nodes with equal » Tree-crossover produces

probability great variations in offspring
— leaf nodes chosen with 0.1 with respect to parents
probility and non-leaf with + Crossover, in addition to

0.9 probability
* Probability of crossover

preserving syntax, allows
expressions to vary in length

— Typically 0.9 and structure (sub-
+ Maximum depth of child is a expression nesting)

run parameter * “raw power”

— Typically ~ 15 o

— Can be size instead

Genetic Programming Tutorial: GECCO 2011 30

868

Tree Crossover

Parent 1

Genetic Programming Tutorial: GECCO 2011 29

Tree Mutation

¢ Often only crossover is used
« But crossover behaves often like macro-mutation

+ Mutation can be better tuned to control the size of the
change

* A few different versions

Genetic Programming Tutorial: GECCO 2011 31

HVL-Mutation:
substitution, deletion, insertion
Parent @ Mutant-subst @

7N
(may
L
N
(t 4/‘

Genetic Programming Tutorial: GECCO 2011 32

Selection in Genetic Programming

¢ Proceeds in same manner as evolutionary algorithm
Same set of methods
— Conventionally use tournament selection
Also see fitness proportional selection
Cartesian genetic programming:
» One parent: generate 5 children by mutation

» Keep best of parents and children and repeat
< If parent fitness = child fitness, keep child

Genetic Programming Tutorial: GECCO 2011 34

869

Other sorts of mutation

¢ Koza:
— Randomly remove a sub-tree and replace it
— Permute: mix up order of args to operator
— Edit: +13->4,and(tt) >t
— Encapsulate: name a sub-tree, make it one node and allow
re-use by others (protection from crossover)
» Developed into advanced GP concept known as

<+ Automatic module definition
<+ Automatically defined functions (ADFs)

¢ Make your own

— Could even be problem dependent (what does a subtree do?
Change according to its behavior)

Genetic Programming Tutorial: GECCO 2011 33

Top Level GP Algorithm

Begin Grow or Full | | Ramped-half-half
pop = random a d operands
repeat Max-init-tree-height

Tournament selectigiecute eadh program in pop with each set of inputs

-Fitness proportionalrselsotioeach program’s fitn

*Your favorite selectigipeat
select 2 parents Define error between actual

copy 2 offspring frqranuexpected

aﬁrepare input data
Designate solution

-Subtree subst | | Mutation probs mutate

Edit . -
“Your own Max-tree-height
pop’= new-pop

or
adequate program found
End
Genetic Programming Tutorial: GECCO 2011 35

GP Preparatory Steps

Ll

Decide upon operators and operands

Set up the fitness function

Decide upon run parameters
Determine settings for the parameters

Genetic Programming Tutorial: GECCO 2011 36

Simple Symbolic Regression

Given a set of independent decision
variables and corresponding values
for a dependent variable
Want: a model that predicts the
dependent variable
— Eg: linear model with numerical
coefficients
» Y=aX1 + bX2 + c(X1X2)
— Eg: non-linear model
> y=ax1?+bx2®
— Prediction accuracy: minimum error
between model prediction and actual
samples
Usually: designer provides a model
and a regression (ordinary least
squares, Fourier series) determines
coefficients
With genetic programming, the
model (structure) and the
coefficients can be learned

Example: y=f(x)
Domain of x [-1.0,+1.0]
Choose the operands

- X
Choose the operators

- +,-,%/(protected)

— Maybe also sin, cos, exp, log

(protected)

Fitness function: sum of absolute
error between yi, and expression’s
return values
Prepare 20 points for test cases
Test problem:

— Y=x4 +x3 +Xx2+X

— GP can create coefficeints (x/x div
X+x = 1/2) but...

Genetic Programming Tutorial: GECCO 2011 38

870

GP Parameters

Population size
Number of generations
Max-height of trees on
random initialization

— Typically 6

Probability of crossover

— Higher than mutation

- 0.9

— Rest of offspring are copied
Probability of mutation

— Probabilities of addition,
deletion and insertion

Population initialization
method

— Ramped-half-half

— All full

— All non-full

Selection method

— Elitism?

Termination criteria
Fitness function

what is used as “solution” of
expression

Genetic Programming Tutorial: GECCO 2011 37

Symbolic Regression with Numeric
Coefficients:Ephemeral Random Constants

New Test problem:
— Y=3x* +10x® + 2x2 + 3x

requires constant creation

Ephemeral random constants
provide GP with numerical
solution components

Provide ERC set
R={-10/9-8..0..89]10}
Include R among the operands.
When individual is to be
randomly created and R is
drawn, one of the elements in R
becomes the new operand.

GP only has the constants
that are randomly drawn in
the initial population
Constants could be lost
through the selection
process (no expression with
a constant survives
reproduction)

But, GP has more primitive
material to work with

It works...partially

Issue with size of constants,
coordination of model and
coefficient search, as a
“clump” of numbers grows,
it is more vulnerable to
crossover disruption

Genetic Programming Tutorial: GECCO 2011 39

More Examples of Genetic Programming

* Evolve priority functions that — Operators are actions that
allow a compiler to produce state change
heuristically choose between + Artifical Ant
alternatives in hyper-block « Boolean Multiplexor
allocation + Image compression

* Evolve a model that predicts,
based on past market values,
whether a stock’s value will
increase, decrease or stay
the same

* Optimal control:

— the frictionless cart, pole
balancing

— State of system comprises
operands set

Genetic Programming Tutorial: GECCO 2011 40

Why are we still here?
Issues and Challenges

e Trees use up a lot of + Bloat: Solutions are full of
memory sub-expressions that may
+ Trees take a long time ::Zg;;x:z:t;;’;;h:;
to execute

difference
Operator and operand sets

» C, Java zfe soliarge, plopulation is so
— Pre-compile the ig, takes too long to run

expressions, PDGP (Poli) * Runs “converge” to a non-
— Store one big tree and changing best fithess
mark each pop member — No progress in solution
as part of it improvement before a good
» Compute subtrees for enough solution is found
different inputs, store
and reuse

— Change the language for
expressions

Genetic Programming Tutorial: GECCO 2011 42

871

Exploitation and exploration
— Selection
— Crossover
Selection
— In the valley of the blind, the
one-eyed man is king
Crossover: combining
Koza’s description
— Identification of sub-trees as
sub-solutions
— Crossover unites sub-
solutions
For simpler problems it does
work

How Does it Manage to Work

Current theory and empirical
research have revealed more
complicated dynamics

Genetic Programming Tutorial: GECCO 2011 M

Runs “converge”: Evolvability

Is an expression tree ideal for evolvability?

Trees do not align, not mixing likes with likes as we
would do in genetic algorithm

Biologically this is called “non-homologous”

One-point crossover
By Poli & Langdon

— Theoretically a bit more tractable

Not commonly used

— Still not same kind of genetic material being swapped

Genetic Programming Tutorial: GECCO 2011 43

Evolvability: are there building
blocks?

* Does a tree or expression ¢ Alook at two extremes:
have building blocks? — (iflte x a) -ORDER
— Context sensitivity of sub- » Context sensitive
expressions — (+ab)-MAJORITY
— What is the “gene” or unit of » Aggregation
genetic transmission? « Even with this simplification,
— Building blocks may come predicting the dynamics is

and go depending on the difficult
context in which they are . A .
found ¢ Will an imperative

expression language offer
better building blocks?

* Will a linear genome provide
less complicated genome

e Where does the Good Stuff
Go and Why?
— Goldberg and O’Reilly
¢ The semantics of the

ics?
operators influences the dynamics?
shape of the expressed part
of the tree
Genetic Programming Tutorial: GECCO 2011 44

Evolvability: modularity and reuse

(1) x=x-1
(2) y=x*x
(3) x=x*y
(4) y=xty
y
The dataflow graph of the (» — 1) 4 (z —1)° polynomial
Genetic Programming Tutorial: GECCO 2011 46

872

Evolvability - modularity and reuse

* Expression tree must be big
to express reuse and
modularity

* Is there a better way to
design the genome to allow
modaularity to more easily
evolve?

Th; representation of (x — 1)° + (r — 1)” in a tree-based genome

Genetic Programming Tutorial: GECCO 2011 45

Register Machine Genotype

 linear genotype, varying length, direct data

Crossover
CPU Registers
-_XX -_é 72 -_5C6

b=btc genotype
a=axorc

c=b*c

c=¢C-a

Genetic Programming Tutorial: GECCO 2011 a7

Register Machine Advantages

« Easier on memory and crossover handling
« Supports aligned “homologous” crossover
* Registers can act as poor-man’s modules
¢ The primitive level of expressions allows for
— Potentially more easily identifiable building blocks
— Potentially less context dependent building blocks
* The register level instructions can be further
represented as machine instructions (bits) and run
native on the processor
— AIM-GP (Auto Induction of Machine Code GP)
— Intel or PPC or PIC, java byte code,
— Experience with RISC or CISC architectures
— Patent number: 5946673, DISCIPLUS system

Genetic Programming Tutorial: GECCO 2011 48

Dealing with Bloat

e Why does it occur?

Examples:
« (not (not x)) — Crossover is destructive
— Effective fitness is selected
e (+x0) for
e (*x1) » Effective fitness

— Not just my fitness but the
fitness of my offspring

e Approaches
— Avoid - change genome

¢ (Move left move-right)
e If (2=1) action

No difference to fitness (defn structure
by Banzhaf, Nordin and — Remove: Koza’s edit
Keller) operation
— Penalize: parsimony
Can be local or global pressure
— Fitness =

» A(perf) + (1-a)(complexity

Genetic Programming Tutorial: GECCO 2011 50

873

Cartesian Genetic Programming

¢ Julian Miller

« operators and operands are
nodes and data flow is
described by genome

* Fixed length genome but
variable length phenome
— Integers in blocks
— For each block, integers to

name inputs and operator

¢ Unexpressed genetic
material can be turned on
later

* No bloat observed (plus
nodes are upper bounded

010,103,230,323,261,542,762,740,9100,1052,1093,14122

Genetic Programming Tutorial: GECCO 2011 49

Reference Material

Where to Find It Online
¢ ACM digital library: http:/portal.acm.org/
— GECCO conferences,
— GP conferences,
— Evolutionary Computation Journal (MIT Press)
« IEEE digital library:
http://www.computer.org/portal/web/csdl/home
— Congress on Evolutionary Computation (CEC)
— IEEE Transactions on Evolutionary Computation
¢ Springer digital library: http:/www.springerlink.com/
— European Conference on Genetic Programming: “EuroGP”
* Genetic Programming Bibiliography
— http://www.cs.bham.ac.uk/~wbl/biblio/

Genetic Programming Tutorial: GECCO 2011 51

Reference Material - Books

* Advances in Genetic Programming
— 3 years, each in different volume, edited

* Genetic Programming: From Theory to Practice
— 10 years, annual, on SpringerLink, edited

¢ John R. Koza

Genetic Programming: On the Programming of Computers by Means of Natural
Selection, 1992 (MIT Press)
— Genetic Programming Il: Automatic Discovery of Reusable Programs, 1994 (MIT Press)

— Genetic Programming lll: Darwinian Invention and Problem Solving, 1999 with Forrest
H Bennett lll, David Andre, and Martin A. Keane, (Morgan Kaufmann)

— Genetic Programming IV: Routine Human-Competitive Machine Intelligence, 2003 with
Martin A. Keane, Matthew J. Streeter, William Mydlowec, Jessen Yu, and Guido Lanza

¢ Genetic Programming: An Introduction, Banzhaf, Nordin, Keller,
Francone, 1997 (Morgan Kaufmann)

« Linear genetic programming, Markus Brameier, Wolfgang
Banzhaf, Springer (2007)

« A Field Guide to Genetic Programming, Poli, Langdon, McPhee,
2008, Lulu and online digitally

Genetic Programming Tutorial: GECCO 2011 52

The End

874

Specific References in Tutorial

Books

e Adaptation in Natural and Artificial Systems, John H Holland, (1992), MIT
Press.

¢ Evolutionsstrategie, Ingo Rechenberg, (1994), Frommann-Holzboog.

e Artificial Intelligence through Simulated Evolution, L.J. Fogel, A.J. Owens,
and M.J. Walsh (1966), John Wiley, NY.

Academic Papers

e On the Search Properties of Different Crossover Operators in Genetic
Programming, Riccardo Poli and William B. Langdon, Genetic
Programming 1998: Proceedings of the Third Annual Conference, pp. 293-
301, Morgan Kaufmann, 22-25 July 1998.

e Where does the Good Stuff Go and Why? Goldberg and O’Reilly,
Proceedings of the First European Workshop on Genetic Programming,
LNCS, Vol. 1391, pp. 16-36, Springer-Verlag, 14-15 April 1998.

e Cartesian genetic programming, GECCO-2008 tutorials, pp. 2701-2726,
ACM, 12-16 July 2008.

Genetic Programming Tutorial: GECCO 2011 53

