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ABSTRACT

This paper presents a robust evolutionary optimisation approach
for real life design problems characterised by uncertainty. The
proposed approach handles uncertainty in the design space, as
well as in the objective functions and constrains, thanks to a new
Pareto dominance criterion based on the neighbourhood around a
solution. The approach is applied on a gearbox design
optimisation problem as a case study. A comparison between two
approaches, robust Pareto dominance criterion and a preference
based penalty function, for deal with noisy environment is done
for highlight the strength of the robust Pareto dominance criterion.

Categories and Subject Descriptors
G 1.6 [Optimization]: Constrained Optimization

General Terms
Algorithms, Design, Reliability, Experimentation

Keywords
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1. INTRODUCTION

Real life optimisation of a complex assembly like a gearbox is
always a challenge for designers due to presence of time
consuming evaluation, expensive tests and uncertainty, that can be
found either in objective functions, constraints and input
variables. Genetic algorithm is an evolutionary computing method
for solving multi objective problem, we may find in literature
[1][2][3][4] some techniques for address the problem of
uncertainty.

2. ROBUST DOMINANCE CRITERTION

This approach for the constraints handling in an uncertain
environment is based upon the dominance criterion presented by
Trautmann et al. [2], the and approach for dealing with uncertain
constraints presented by Roy [1] and uses the information about
the feasibility of an individual and the type of violation within the
neighbourhood [1] for the ranking process of the individuals. The
proposed sorting process can be schematised as follows in Figure
1 and Figure 2:
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LEGEND:
VV = type of violation following [1]
RC, = ranking value
CSj; = constraint scoring
CVj; = constraint violation
ScS; =summed constraint scoring
ScV; =summed constraint violation
i = individual = (1, ..., pop)
j =constraint=(1, ... k)
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At the end of the procedure we have identified for every individual the number of constraints it
violate ( Sc8 ), the type of violvation and therefore its overall constraints scoring ( ScV )

Figure 1 Evaluation of Constraint Scoring and Constraint Violation

2. RESULTS

Following the studies of [6][7][8] our aim is the optimisation of a
speed reducer. In this section we present three different scenarios
to highlight that, since uncertainty is introduced in the model, the
results changes and the population converge towards a different
Pareto front composed of more robust solutions [5]. If we
implement the uncertainty just in the objective functions (Figure 3
crosses) the algorithm finds harder to converge close to the true
Pareto front (squares), due to the spread of the possible results and
because it hardly finds the non dominated set among the
population. With the uncertainty in all the model and the new
dominance criterion the results are better than before, with the
proposed preference based dominance criterion the algorithm is
able to converge towards a Pareto robust set of solution.



The definition of the new robust dominance
criterion is: with two solutions and we can say
y that “dominates” iff one of the following is
true:
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Figure 2 Robust dominance process

2.1 Different levels of uncertainty

In this section we have increased the uncertainty spread around
every solution, both on the objective functions, constraints and
design variables. As we can see from Figure 3 with the increase of
the uncertainty the algorithm is still able to converge. However
the solutions require a larger volume for the gearbox and a greater
stress on the shaft, this is not because the algorithm did not find
the previous non dominated set but because now the robust
solutions lie on a different Pareto front due to the increased spread
of their objective sensitivity region [5].
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Figure 3: a) Different techniques: uncertainty in the entire model
(dots) , no uncertainty (squares) and in just the objective space
(crosses); b) Solution space with different level of uncertainty: dots ¢
=5%, squares ¢ = 7.5%, crosses ¢ = 10%, stars NSGA II with ¢ = 0%
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2.2 Dominance criterion and penalty function
In order to also consider different approaches to the problem, we
have developed another algorithm that uses a penalty function
instead of the proposed dominance criterion. Like the preference
based dominance criterion also this penalty function allows the
user to give the constraints a ranking value following his needs.

penalty, = ax(1+n_conx B)x(gen) xviolation
violation = ZLI sample x pen,

Where a, B and y are fixed parameters, gen is the number of the
actual generation, sample is a value depending on the number of
constraints violations hit by the sampled point around the
neighbourhood. However as we see from Figure 4 the results that
we get with dominance criterion are closer to the true Pareto Front
in comparison with the preference based penalty function.
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Figure 4 penalty function (crosses) and dominance approach (dots)
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3. CONCLUSION

Design optimisation under uncertainty and noise represent one of
the greatest challenges for engineers due to a lack of information,
it is also one of the most common issues in a real life
optimization. This paper presents an approach to represent the
uncertainties within the design variables, objective functions and
constraints. The evolutionary optimisation uses a novel
dominance criterion to implement a concept of robust design
solutions where the constraints violation is assessed within the
neighbourhood of a design solution. It is observed that the
dominance criterion based approach identified better design
solutions in a gearbox case study than a penalty function based
approach.
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