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ABSTRACT
This paper shows that statistical algorithms proposed for
the quantitative trait loci (QTL) mapping problem, and the
equation of the multivariate response to selection can be of
application in multi-objective optimization. We introduce
the conditional dominance relationships between the objec-
tives and propose the use of results from QTL analysis and
G-matrix theory to the analysis of multi-objective evolution-
ary algorithms (MOEAs).

Categories and Subject Descriptors
G.1 [Optimization]: Global optimization; G.3 [Probabilistic
methods]

General Terms
Algorithms

Keywords
multi-objective optimization, fitness function, quantitative
genetics, selection, probabilistic models

1. INTRODUCTION
One of the research fields from which nature-inspired ideas

applied to evolutionary computation originated is quanti-
tave genetics (the study of inheritance at the phenotypic
level) [3]. An evolutionary view of phenotypic fitness traits
points to the importance of selection for phenotypic diver-
sification and to the fact that the correlated evolution of
multiple traits is common [1]. Since the selection of single
traits may be influenced by their correlations to other traits,
methods from quantitative genetics try to incorporate these
correlations in the theoretical framework for evolutionary
analysis. In particular, the multivariate response to selec-
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tion equation links the fitness gain of different traits to the
G-matrix (the trait covariance matrix).

In our approach to methods from quantitative genetics,
we are not only looking for metaphors that could be incor-
porated into the conception of more efficient algorithms. We
are also in the search for conceptual frameworks that could
increase the understanding of the way MOEAs behave. We
recognize modeling as an essential element to expand the ap-
plicability of these algorithms to practical problems. There-
fore, results from genetics that provide insight or theoretical
tools for the conception, use, and interpretation of MOEA
models are particularly valuable. The paper introduces the
concepts of conditional dominance and conditional conflict-
ing criteria and discusses the use G-matrix theory to the
analysis of MOEAs.

2. MODELING OF CONDITIONAL RELA-
TIONSHIPS BETWEEN OBJECTIVES

One of the main uses of variable-objective mapping is to
analyze the way in which objective relationships may be
mediated by some common variables. The influence of the
variable may be so critical, that for a given (fixed) variable’s
value, the type of relationship between the objectives may
be of one type (e.g. conflicting objectives) and for a different
variable value the type of relationship may change.

In this section, we extend the definitions of dominance
and conflicting objectives introduced in [2] to capture the
notion of dependence between objective relationships with
respect to variables.

We consider a maximization problem with k objective
functions f i : X → R, i = 1, . . . k, where the vector func-
tion fi := (f1, . . . , fk) maps each solution x to an objective
vector f(x) ∈ Rk. It is also assumed that the underlying
dominance structure is given by the weak Pareto dominance
relation which is defined as follows:

�F′ := {(x,y) | x,y ∈ X ∧ ∀fi ∈ F ′ : fi(x) ≤ fi(y)},
where F ′ is a set of objectives with F ′ ⊆ F := {f1, . . . , fk}.
The Pareto (optimal) set is given as {x ∈ X |	 ∃y ∈ X\{x} :
x �F y ∧ y �F x}.

We define a general dominance relation for a subset of
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solutions XS, S ⊂ {1, . . . , n}, given by fixed values for some
variables.

The conditional weak Pareto dominance relation is defined
as follows:

�x′
S

F′ := {(x,y) | x,y ∈ X, xS = yS = x′
S ∧ ∀fi ∈ F ′ :

fi(x) ≤ fi(y)}.
Notice that for S = ∅, �x′

S
F′=�F′ .

Definition 1. Let F1,F2 ⊆ F be two sets of objectives.
We say that

• F1 and F2 are not conditionally conflicting given XS =

x′
S iff �x′

S
F1

⊆�x′
S

F2
∧ �x′

S
F2

⊆�x′
S

F1
.

• F1 and F2 are conditionally weakly conflicting given

XS = x′
S iff (�x′

S
F1

⊆�x′
S

F2
∧ �x′

S
F2

��x′
S

F1
) or (�x′

S
F2

⊆�x′
S

F1

∧ �x′
S

F1
��x′

S
F2

).

• F1 conditionally strongly conflicting with F2 given XS =

x′
S iff �x′

S
F1

��x′
S

F2
∧ �x′

S
F2

��x′
S

F1
.

The relationships between the problem criteria in differ-
ent subspaces of the search space may change. Fixing some
of the problem variables is only one of the possible ways
to define subspaces of the search space. However, we argue
that this type of decomposition is particularly suitable for a
better understanding of multi-objective problems (MOPs).
Conditional relationships between criteria given variables
could be useful for a decision maker (DM) in the process
of selecting the final solutions from the Pareto set approxi-
mation. It would be possible to identify problem variables
that play a critical role in the way the objectives are related.

3. G-MATRIX IN MULTI-OBJECTIVE OP-
TIMIZATION ALGORITHMS

When selection in individual traits may produce changes
in other related traits, the response to selection on multi-
ple traits [1] or multivariate response to selection is used to
predict the evolutionary selection acting on multiple traits.
This concept is of direct application to the analysis of MOEAs
because selection methods, as applied in MOEAs, take into
consideration the information about all the objectives. A
fundamental question is how the applied selection will influ-
ence the improvement in fitness values for all the objectives.

Δz = Gβ (1)

The multivariate breeder Equation (1) can be seen as a
generalization of the response to selection to the case of mul-
tiple traits. It describes the vector of changes in mean trait
values (Δz) as a result of selection. β is a vector of selec-
tion gradients for the traits and G is the covariance between
traits, i.e. Gii represents the additive genetic variance of
trait i and Gij the covariance between traits i and j.

We have not found previous reports on the application of
the G-matrix in the analysis of MOEAs. In [5], concepts
from quantitative genetics were applied to the analysis of
single-objective evolutionary algorithms. The multivariate
response to selection equation and the G-matrix could be
applied to MOEAs in the following general ways: 1) Predic-
tions of MOEA behavior. 2) Reconstruction of the form of

selection that has led to divergence among populations. 3)
Comparison between MOEAs.

For a given selection method and reproduction operator,
we can compute Δz from the mean objective values achieved
in generations t and t + 1. Similarly, β and G can be com-
puted from the information available from the MOEA. We
can use Equation (1) to estimate the agreement between Δz
and Gβ. Investigating the G-matrix for different selection
and reproduction methods is useful to understand the differ-
ent dynamics that govern the behavior of MOEAs and how
these dynamics are related to the existence of correlations
between objectives.

4. CONCLUSIONS
The main contributions of this paper are: 1) To introduce

the concepts of conditional dominance and conditional con-
flicting criteria and 2) To propose the use of the multivariate
response to selection equation for the analysis of MOPs.

Statistical methods for automatic computation of the re-
lationships between variables and objectives [4] open a new
direction for MOEA enhancement. These methods can si-
multaneously improve the search efficiency and uncover the
structure of the interactions in MOPs. Theoretical frame-
works such as the multivariate response to selection allows us
to compare different selection methods in terms of the selec-
tion differential they produce, but also in terms of their effect
on the objectives covariance in subsequent populations. In
the future, we expect the incorporation of this theoretical
framework for the analysis, and potential improvement, of
MOEAs.
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