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ABSTRACT

An earlier study defined a KKT-proximity measure to test
the convergence property of an evolutionary algorithm for
solving single-objective optimization problems. In this pa-
per, we extend this measure for testing convergence of a set
of non-dominated solutions to the Pareto-optimal front in
the case of smooth multi-objective optimization problems.
Simulation results of NSGA-II on different two and three-
objective test problems indicate the suitability of using the
proximity measure as a convergence metric for terminating
a simulation of an evolutionary multi-criterion optimization
algorithm.

Categories and Subject Descriptors

G.1 [Numerical Analysis]: nonlinear programming, con-
strained optimization
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Algorithms, Performance, Verification

Keywords
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1. INTRODUCTION

Evolutionary algorithms, including evolutionary multi ob-
jective optimization (EMO) algorithms, do not usually use
any theoretically motivated termination criterion for stop-
ping a simulation. Often, ad-hoc measures (fixed number of
generations, threshold change in objective value, etc.) are
used which require some experimentations for setting the
appropriate parameter values. However, for smooth prob-
lems, there exist derivative based optimality conditions, the
most popular being the Karush-Kuhn-Tucker (KKT) condi-
tions which can be used to verify if a point is optimal [2].
An earlier study [3] has revealed the point nature of the
KKT conditions for single-objective optimization problems
stating that there is no apparent correlation between prox-
imity of a solution from the optimum and the corresponding
extent of satisfaction of KKT conditions. The study also
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suggested a KKT-proximity measure by relaxing the com-
plementary slackness condition so that under certain con-
straint qualification conditions, a series of points that re-
duce the KKT-proximity measure in a piece-wise continual
manner will eventually converge to a KKT point.

This paper extends the above KKT-proximity measure for
multi-objective optimization problems. Since the optimality
conditions for multi-objective optimization involve more pa-
rameters and additional constraints, a systematic procedure
is developed for computing the KKT-proximity measure for
each non-dominated point. Ideally, this measure should re-
duce as the points approach the Pareto-optimal front and
should finally be zero when they are exactly on the Pareto-
optimal front. Since a set of non-dominated points may have
different KKT-proximity values, we propose to use a repre-
sentative set and decide the termination based on the best,
median and worst of these values.

Our primary goal in this paper is to study the reduc-
tion of this new multi-objective KKT-proximity measure
for non-dominated points evolved over the generations of
a popular EMO algorithm (NSGA-II) on some test prob-
lems. Thereafter, we explore the possibility of using a KKT-
multiplier-driven local search on the non-dominated points
of the last generation in cases where the reduction of the
KKT-proximity error to zero does not occur.

2. FIRST-ORDER KKT OPTIMALITY CON-
DITIONS

A typical multi-objective optimization problem with in-
equality constraints can be formulated as:

Minimize {f1(x), f2(x), ..., fe(x)},
Subject to g;(x) <0, j=1,2,...,m.

x €R"™

(1)

If the above multi-objective problem is convex, and if the
objective and constraint functions at a feasible point X are
continuously differentiable, then the Karush-Kuhn-Tucker
(KKT) sufficient condition for X to be Pareto-optimal, is
that there exist multipliers 0 < A € R* (0 < \; Vi) and
0 < u € R™ such that:

(2)
®3)

k m
D ONVE®) + Y u V(%) = 0,
i—1 j=1

ujgi(x) = 0, Vj,

A point in the decision space satisfying the above condi-
tions is called a KKT point. Eq. (2) is the stationarity condi-



tion, which emphasizes that at the KKT point, the gradient
vectors of the objective function and the constraints remain
in an equilibrium, making the point stationary. Eq. (3) is
the complementary slackness condition, which ensures par-
ticipation of only the active constraints (g;(x) = 0) in the
stationarity condition. While u;s are the Lagrange multipli-
ers, \;s can simply be called as the KKT multipliers. Note
that in case of single-objective optimization, where k = 1,
the above conditions reduce to the popular single-objective
KKT optimality conditions by putting A = A1 and since
A > 0, we can impose A1 = 1 without loss of generality.
Interested readers can refer to [2] for further details.

3. KKT PROXIMITY MEASURE

Tulshyan et al. [3] discussed the point nature of the KKT
conditions for a single-objective case. Calling the norm of
the LHS of the Eq. (2) (for k = 1) as KKT Error, that is,

KKT Error = |V f1(X) + Zungj(i)H, (4)

the study showed that the magnitude of the KKT Error
at any arbitrary point cannot be related to its proximity
to a KKT point, unless the KKT conditions are modified.
It further proposed schemes for relaxing the KKT condi-
tions, essentially the complementary slackness condition, in
order to obtain a new proximity measure which shows a
near-monotonic reducing behavior as points get closer to
the optimum and is zero at the actual optimum. Extending
the above approach and modifying it for the multi-objective
case, we propose the following methodology for computing
the KKT-Proximity measure at a feasible solution (x*):

Minimize €,
Subject to || 3K MV F(xF) + P u; Vg (x°)|1? < ek,

Z;n:1 ujgj(xk) > —€k,
)\i21 Viandu]-ZO Vj

Here, the variable vector is (ex, A, u). The value € obtained
after the optimization is the KKT-proximity measure at the
point x*.

4. EXPERIMENTAL RESULTS

We analyze the proposed proximity measure with respect
to its following properties: (1) it reduces smoothly to zero for
a sequence of points approaching the Pareto-optimal front,
and (2) it is zero at every point on the Pareto-optimal front.
To study its behaviour, we solve two well-known test prob-
lems using NSGA-II [1]. For every generation of NSGA-II,
we first find the non-dominated front of solutions (NF). A
widely distributed sample set P (P C NF) representing the
non-dominated front is obtained using k-means clustering
(in objective space). The KKT-proximity measure is then
computed for each solution belonging to P.

Figure 1 shows the best, median and worst values of the
KKT-proximity measure calculated for the set P in each
generation for 10 different NSGA-II runs. The inset shows
the track of iterates with best value of the measure. Note
how all points in P of the last generation lie exactly on the
Pareto-optimal front. The error value also smoothly reduces
to zero for all the 10 runs.

On a much harder three-objective DTLZ5 problem, it is
observed that though the reduction of the proximity measure
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Figure 1: KKT-Proximity measure for ZDT1.

is more or less smooth, the actual values are not adequate for
termination even after 100 generations as shown in Figure 2.
For such cases, we propose the use of the KKT multipliers
obtained at each point in the final non-dominated front for
solving a corresponding single objective achievement scalar-
izing function [4] with w; = X;. Figure 2 also shows the
effect of this local search after the 100-th generation.
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Figure 2: KKT-Proximity Measure for DTLZ5.

S.  CONCLUSIONS

We have developed and demonstrated a KKT proxim-
ity measure for multi-objective optimization problems. The
measure has a smoothly reducing property and converges to
zero for most cases but requires a local search effort for the
latter in harder problems. The use of these measures for
terminating a simulation is considered to be part of future
work. Further, this local search can be concurrently used
with EMO algorithms for faster convergence.
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